Why don?t we use just one NMOS or PMOS transistor as a
transmission gate?
Answers were Sorted based on User's Feedback
Answer / nikki
nmos passes a good 0 and a degraded 1 , whereas pmos passes
a good 1 and bad 0. for pass transistor, both voltage
levels need to be passed and hence both nmos and pkmmos
need to be used.
| Is This Answer Correct ? | 39 Yes | 0 No |
How to improve these parameters? (Cascode topology, use long channel transistors)
Mention what are the different gates where Boolean logic are applicable?
What is Fowler-Nordheim Tunneling?
Explain how binary number can give a signal or convert into a digital signal?
What?s the difference between Testing & Verification?
Draw Vds-Ids curve for a MOSFET. Now, show how this curve changes considering Channel Length Modulation.
What is the most complicated/valuable program you written in C/C++?
23 Answers HCL, IBM, Intel, TCS, TVS, Wipro,
Need to convert this VHDL code into VLSI verilog code? LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ----using all functions of specific package--- ENTITY tollbooth2 IS PORT (Clock,car_s,RE : IN STD_LOGIC; coin_s : IN STD_LOGIC_VECTOR(1 DOWNTO 0); r_light,g_light,alarm : OUT STD_LOGIC); END tollbooth2; ARCHITECTURE Behav OF tollbooth2 IS TYPE state_type IS (NO_CAR,GOTZERO,GOTFIV,GOTTEN,GOTFIF,GOTTWEN,CAR_PAID,CHEATE D); ------GOTZERO = PAID $0.00--------- ------GOTFIV = PAID $0.05---------- ------GOTTEN = PAID $0.10---------- ------GOTFIF = PAID $0.15---------- ------GOTTWEN = PAID $0.20--------- SIGNAL present_state,next_state : state_type; BEGIN -----Next state is identified using present state,car & coin sensors------ PROCESS(present_state,car_s,coin_s) BEGIN CASE present_state IS WHEN NO_CAR => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= NO_CAR; END IF; WHEN GOTZERO => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTZERO; ELSIF (coin_s = "01") THEN next_state <= GOTFIV; ELSIF (coin_s ="10") THEN next_state <= GOTTEN; END IF; WHEN GOTFIV=> IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIV; ELSIF (coin_s = "01") THEN next_state <= GOTTEN; ELSIF (coin_s <= "10") THEN next_state <= GOTFIV; END IF; WHEN GOTTEN => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s ="00") THEN next_state <= GOTTEN; ELSIF (coin_s="01") THEN next_state <= GOTFIV; ELSIF (coin_s="10") THEN next_state <= GOTTWEN; END IF; WHEN GOTFIF => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIF; ELSIF (coin_s ="01") THEN next_state <= GOTTWEN; ELSIF (coin_s = "10") THEN next_state <= GOTTWEN; END IF; WHEN GOTTWEN => next_state <= CAR_PAID; WHEN CAR_PAID => IF (car_s = '0') THEN next_state <= NO_CAR; ELSE next_state<= CAR_PAID; END IF; WHEN CHEATED => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= CHEATED; END IF; END CASE; END PROCESS;-----End of Process 1 -------PROCESS 2 for STATE REGISTER CLOCKING-------- PROCESS(Clock,RE) BEGIN IF RE = '1' THEN present_state <= GOTZERO; ----When the clock changes from low to high,the state of the system ----stored in next_state becomes the present state----- ELSIF Clock'EVENT AND Clock ='1' THEN present_state <= next_state; END IF; END PROCESS;-----End of Process 2------- --------------------------------------------------------- -----Conditional signal assignment statements---------- r_light <= '0' WHEN present_state = CAR_PAID ELSE '1'; g_light <= '1' WHEN present_state = CAR_PAID ELSE '0'; alarm <= '1' WHEN present_state = CHEATED ELSE '0'; END Behav;
Explain Clock Skew?
Explain the Working of a 2-stage OPAMP?
Are you familiar with the term snooping?
Have you studied buses? What types?