What are the strategies acquired to cure tube vibration and exchangers in a shell?
No Answer is Posted For this Question
Be the First to Post Answer
QUANTUM COMPUTING - EXAMPLE 32.9 : In quantum computing, find the equations of S = (a | 0 > + b | 1 >) (g | 0 > + d | 1 >) in term of | 00 >, | 01 >, | 10 > and / or | 11 > when ad = 0.
Oil and fat containing food items are flushed with nitrogen. Why?
Question 55 - The differential equation is 3 dy / dt + 2y = 1 with y(0) = 1. (a) The Laplace transformation, L for given terms are : L (dy / dt) = sY(s) - y(0), L(y) = Y(s), L(1) = 1 / s. Use such transformation to find Y(s). (b) The initial value theorem states that : When t approaches 0 for a function of y(t), it is equal to a function of sY(s) when s approaches infinity. Use the initial value theorem as a check to the answer found in part (a).
how can we derive power factor equation p=vi cos phi? derivation?
how FOULING effectd the heat transfer rate
PROCESS CONTROL - EXAMPLE 6.2 : A stream with volumetric flow rate Q enters a cylindrical tank and a stream with volumetric flow rate q exits the tank. The fluid has a constant heat capacity and density. There is no temperature change or chemical reaction occurring in the tank. Develop a model for determining the height of the tank, h. Let V is the volume, A is the cross sectional area, r is the density, m is the mass, where V and A are for the tank, r and m are for the fluid. The rate of mass of fluid accumulation, dm / dt = (Q - q) r. Prove the model to be dh / dt = (Q - q) / A.
Why does a fractionating column does not catch fire even though it operates at temperature greater than 400 degree C ?
In Galvonised iron and stainsteel pipes, in which pipe friction losses will more and why ?
Question 52 - The half-life for first order reaction could be described in the differential equation dC / dt = -kC where k is a constant, C is concentration and t is time. (a) Find the equation of C as a function of t. (b) Find the half life for such reaction or the time required to reduce 50 % of the initial concentration, where k = 0.139 per minute. (c) When the initial concentration Co is 16 mol / cubic metre, how long does the reaction required to achieve the final concentration of 1 mol / cubic metre?
Experiment constitutes 1000 ml of 10 ppm dye solution and 0.2 g catalyst mixed in beaker. How to calculate the initial of concentration?
hi.i m student of chemical engg. and studying in 5 th sem.how can i improve my technical knowledge..can u sugest me a link like book or any website..?
Mention some of the specialized crushing methods?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)