Question 70 - According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M.
(a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D.
(b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M.
(c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.
Answer / kang chuen tat (malaysia - pen
Answer 70 -
(a) v = (dP) AD / t.
(b) Hydrogen has least M among all gases - general knowledge - highest D. Then B = hydrogen and C = nitrogen.
(c) Let 0.5 M(B) V(B) = 0.5 M(C) V(C), then V(B) / V(C) = M(C) / M(B).
The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS 61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
Should slurry pipes be sloped during horizontal runs?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.3 : (a) In the M / M / 1 queue that happens with randomness, let State 0 = the queue and server are empty, State 1 = the server is in use and the queue is empty, State 2 = the server is in use and 1 is in the queue, State 3 = the server is in use and 2 in the queue. Let P (0) = probability of State 0, P (1) = probability of State 1, P (2) = probability of State 2, P (3) = probability of State 3 and so on. If c = constant, P (1) = c P (0), P (2) = c [ c P (0) ], P (3) = c { c [ c P (0) ] }, write an equation that involves P (N), P (N + 1) and c. (b) Let L = market price of risk, r = riskless rate, m = expected return, s = volatility. Given that L = (m - r) / s related to oil prices, expected return = 12 %, s = 20 %, riskless rate = 8 %, calculate the market price of risk.
from which book shud i will prepare for the hpcl and various company exma i m fresher and my basic is not strong could u suggest from where to start
DIFFERENTIAL EQUATIONS - EXAMPLE 20.2 : During the landing process of an airplane, the velocity is constant at v. (a) If the displacement of the plane is x at time t, find the differential equation that relates t, x and v. (b) The plane has 2 parts of wheels - the front and the back, separated by a distance L. The front part of the wheel touches the land first, that allows the straight body of the plane to form an angle T with the horizontal land. If the vertical distance between the back part of the wheel and the horizontal land is y, find the equation of y as a function of L and T. (c) Find the differential equation that relates dy as a function of dt, v and sin T. (d) Find the differential equation that consist of dy as a function of y, L, v and dt. (e) Find the equation of y as a function of v, L, t and C where C is a constant. (f) When t = 0, prove that y = exp C as the initial value of y.
what is the difference between psv and prv?
What is gibbs free energy?
What is the process of Scrubber ?
In a Laplace Transform Table, the Laplace transfer function of f(t) is F(s). When d(t) = f(t) then 1 = F(s). When x(t) = f(t) then X(s) = F(s). If d(t) is the impulse of a spring when d(t) = kx(t), then derive the equation for the impulse of a spring as X(s) in term of k. Next question : A controller has a transfer function a and the other controller has a transfer function b. The overall transfer function of both controllers is ab. What is the transfer function overall when both controllers have similar transfer function 1 / (Cs k)?
ENVIRONMENTAL ENGINEERING - QUESTION 22.2 : Biochemical Oxygen Demand (BOD) could be calculated using the formula BOD = (DOi - DOf) (Vb / Vs) where Vb = Volume of bottle in ml, Vs = Volume of sample in ml, DOi = Initial dissolved oxygen in mg / L, DOf = Final dissolved oxygen in mg / L. (a) By using a bottle of Vb = 300 ml with sample Vs = 30 ml, find the BOD if DOi = 8.8 mg / L and DOf = 5.9 mg / L. (b) By using a bottle Vb = 600 mL with sample Vs = 100 mL, find the BOD if DOi = 8.8 mg / L and DOf = 4.2 mg / L. (c) Find the average BOD = [ Answer of (a) + Answer of (b) ] / 2. (d) If the BOD-5 test for (a) - (c) is run on a secondary effluent using a nitrification inhibitor, find the nitrogenous BOD (NBOD) = TBOD - CBOD. Let TBOD = 45 mg / L and CBOD = Answer of (c).
What are the different types of equipments for the conveyance of solids?
ELECTRICAL TECHNOLOGY - EXAMPLE 16.1 : According to Shockley equation, the I - V characteristic of a diode is approximated by I = IS [ exp (nVD / VT) - 1 ]. For silicon, let the reverse bias saturation current IS as 0.000000000001. If n is ideality factor with value of 1.5, VT as thermal voltage drop of 0.026 V at room temperature, what is the value of current I that passes through the silicon diode in the heater of evaporator when the forward voltage drop VD = 0.026 V? Please take note that exp is the exponential function with e(1) = 2.718, e(2) = 7.389.
How much waterproofing compound in one Sqm Plastering (thick.12mm)
0 Answers Ess Pee Construction,
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)