Question 55 - The differential equation is 3 dy / dt + 2y = 1 with y(0) = 1. (a) The Laplace transformation, L for given terms are : L (dy / dt) = sY(s) - y(0), L(y) = Y(s), L(1) = 1 / s. Use such transformation to find Y(s). (b) The initial value theorem states that : When t approaches 0 for a function of y(t), it is equal to a function of sY(s) when s approaches infinity. Use the initial value theorem as a check to the answer found in part (a).
Answer / kang chuen tat (malaysia - pen
Answer 55 - (a) For the equation 3 dy / dt + 2y = 1, its Laplace transformation is 3 [ sY(s) - y(0) ] + 2Y(s) = 1 / s, 3 (sY - 1) + 2Y = 1 / s, 3sY - 3 + 2Y = 1 / s, 3sY + 2Y = 1 / s + 3, Y (3s + 2) = (1 + 3s) / s. Y = Y(s) = (1 + 3s) / [ s (3s + 2) ]. (b) Initial value theorem states that y(0) = sY(infinity), then 1 = s (1 + 3s) / [ s (3s + 2) ] = (1 + 3s) / (3s + 2) approaches 1 when the value of s approaches infinity. The checking is correct. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 1 Yes | 0 No |
How to determine the particle size distribution for a given bulk solid?
What are the apt definitions for apparent power, active power and reactive power?
i am a student of thapar university final year.can anybody please help me with the exam pattern of the companies:engineers india ltd. ; iocl ; UOP, HPCL. If psbl plz send me the previous years questions on this email id k_arora1987@yahoo.com. i d be really greatful
What effect does choking a vertical thermosiphon have on the heat transfer rate?
HEAT TRANSFER - EXAMPLE 5.3 : In a cylinder with a hollow, let a is outside radius and b is the inside radius. In a steady state temperature distribution with no heat generation, the differential equation is (d / dr) (r dT / dr) = 0 where r is for radius and T is for temperature. (a) Integrate the heat equation above into T(r) in term of r. (b) At r = a, T = c; at r = b, T = d. Find the heat equation of T(r) in term of r, a, b, c, d.
HOW WOULD YOU CALIBRATE A ROTAMETER
ENVIRONMENTAL ENGINEERING - QUESTION 22.1 : In order to predict the wastewater production, the population number has to be understood. The population data is : 72000 (for year 1961 or P-1961), 85000 (for year 1971 or P-1971), 110500 (for year 1981 or P-1981). (a) Find the average population increase, or [ (P-1981 - P-1971) + (P-1971 - P-1961) ] / 2. (b) Find the average percentage population increase, or [ (P-1981 - P-1971) / P-1971 + (P-1971 - P-1961) / P-1961 ] / (2) X 100. (c) Find the incremental increase or P-1981 - 2 (P-1971) + P-1961. (d) Let Po = P-1981. After 2 decades or n = 2, the population is P-2001. By using arithmetical increase method, find P-2001 = Po + n (Answer for a). (e) By using incremental increase method, find P-2001 = (Answer of d) + n (n + 1) (Answer of c) / 2. (f) By using geometrical increase method, find P-2001 = Po [ 1 + (Answer of b) / 100 ] ^ n where ^ is power sign, or 1 ^ 2 = 1 x 1 = 1. (g) If the actual P-2001 = 184000, which method of estimation is more accurate, based on your answer in (d), (e) and (f)?
Question 83 - The United States of America Energy Information Administration reports the following emissions in million metric tons of carbon dioxide in the world for year 2012 : Natural gas : 6799, petroleum : 11695, coal : 13787. Coal-fired electric power generation emits around 2000 pounds of carbon dioxide for every megawatt hour generated, which is almost double the carbon dioxide released by a natural gas-fired electric plant per megawatt hour generated. If 1 metric ton = 1000 kg and 1 pound = 0.4536 kg, estimate the total energy generated by natural gas in the world for year 2012, in gigawatt hour.
colour of flame is blue as well red. why?
While there, are many tests available to detect leaks on vessels, is there a technology available to quantify the leak, or measure the flow through a leak?
QUANTUM BIOLOGY - EXAMPLE 33.8 : (a) Let ^ be the symbol of power where 1 ^ 2 = 1 x 1 = 1, 2 ^ 2 = 2 x 2 = 4. Let the number of electrons in a human body to be 10 ^ 28 = A, the number of all of the grains of sand on Earth planet to be 7 x (10 ^ 20) = B, the number of all the stars in the visible sky to be 8 x (10 ^ 3) = C. By assuming that every star in the visible sky has the same number of grains of sand as on Earth planet, prove by mathematical calculations that there are more electrons in one human body compared to the number of all of the grains of sand on the stars in the visible sky. (b) The incoming solar radiation to the Earth's surface is mainly from sun. Around 51 % of the radiation is absorbed by Earth's surface. Around 19 % is absorbed by atmosphere and clouds. In term of reflection, 4 % of the radiation is from surface of Earth, 6 % is reflected by atmosphere and the rest is reflected by clouds. Find the percentage of radiation absorbed by and reflected by biological beings on Earth, with reason for your response.
plz send the interview questions in the written test asked by hindustan petroleum corporation ltd.Iam a b>tech in chemical engineering.My written test is on feb 2008.urgent plz.send the questions to indra_bits10@yahoo.com
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)