Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


why traction voltage is 25kv


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

Hi, Please give me chemical engineering paper for IOCL exam for entire written exam, GD and personel interview model questions to my email id. (chemistnathan@rediffmail.com) Rgds, Ragu

0 Answers   HAL, IOCL,


What diffrence between flush distillation & batch distillation ?

0 Answers  


what is the apt definitions for apparent power ,active power and reactive power?and explanation about different types of lamps?

0 Answers  


if the length of a pipe doubled what will be the effect on Pressure in line?

7 Answers   ISRO,


BIOPROCESS ENGINEERING - EXAMPLE 14.1 : In differential centrifugation of cells with diameter D in centimeter, the square of D is given by D x D = [18n ln (RF / RI) ] / [ (RP - RFF) Wt ] where n is the fluid viscosity (poise), RF is the final radius of rotation (cm), RI is the initial radius of rotation (cm), RP is cell density (g / ml), RFF is the fluid density (g/ml), W the square for the rotational velocity in (radians / s) (radians / s), t is the time required to sediment from RI to RF (s). Derive an equation for W as a function for D, n, RF, RI, RP, RFF and t, with the stated units above, in radian & degree.

1 Answers  


PROCESS DESIGN - EXAMPLE 21.1 : According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.

1 Answers  


Question 112 - In quantum computing, let the amplitude A = a | 0 > + b | 1 >, | a | | a | + | b | | b | = 1. Find the values of b if A = 0.8 | 0 > + b | 1 >.

1 Answers  


ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.1 : (i) In the pricing of engineering bonds, 3 sets of data for Portfolio Value, Probability, Senior Tranche and Junior Tranche are : $2000, 81 %, $1000, $1000; $1000, 18 %, $1000, $0; $0, 1 %, $0, $0. By assuming independent defaults, find the price for : (a) Senior Tranche; (b) Junior Tranche. (ii) Assuming statistical independence of the values in the sample, the standard deviation of the mean (S) is related to the standard deviation of the distribution (s) by : N x S x S = s x s, where N is the number of observations in the sample used to estimate the mean. In a drug development project, let s = 1. Find the value of S if such a similar project is performed 100 times.

1 Answers  


Question 100 - (a) Time evolution in Heisenberg picture, according to Ehrenfest theorem is m (d / dt) < r > = < p >, where m = mass, r = position, p = momentum of a particle. If v = velocity, prove that m < v > = < p >. (b) Lande g-factor is given by Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. If Gl = 1 and under approximation of Gs = 2, prove by calculation that Gj = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ].

1 Answers  


Question 60 – During the landing process of an airplane, the velocity is constant at v. (a) If the displacement of the plane is x at time t, find the differential equation that relates t, x and v. (b) The plane has 2 parts of wheels – the front and the back, separated by a distance L. The front part of the wheel touches the land first, that allows the straight body of the plane to form an angle T with the horizontal land. If the vertical distance between the back part of the wheel and the horizontal land is y, find the equation of y as a function of L and T. (c) Find the differential equation that relates dy as a function of dt, v and sin T. (d) Find the differential equation that consist of dy as a function of y, L, v and dt. (e) Find the equation of y as a function of v, L, t and C where C is a constant. (f) When t = 0, prove that y = exp C as the initial value of y.

1 Answers  


What is screen analysis and what are its applications in the chemical industry?

0 Answers  


What does Dew point -40C mean in an air drying unit.

4 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)