QUANTUM COMPUTING - EXAMPLE 32.7 : If | ± > = 0.707 ( | 0 > ± | 1 > ), prove that | Ψ (t = 0) > = | 0 > = 0.707 ( | + > + | - > ).
QUANTUM COMPUTING - ANSWER 32.7 : | + > = 0.707 ( | 0 > + | 1 > ), | - > = 0.707 ( | 0 > - | 1 > ), | + > + | - > = 0.707 ( | 0 > + | 1 > ) + 0.707 ( | 0 > - | 1 > ) = 0.707 ( | 0 > + | 1 > + | 0 > - | 1 > ) = 0.707 ( 2 | 0 > ). | Ψ (t = 0) > = | 0 > = [ 1 / (0.707 x 2) ] ( | + > + | - > ) = 0.707 ( | + > + | - > ) (Proven). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
What are the different ways in which solids can be blended?
who is the first atomic scientist in india?
What is formula for petrol?
FOOD ENGINEERING - QUESTION 23.2 : (a) A dryer reduces the moisture content of 100 kg of a potato product from 80 % to 10 % moisture. Find the mass of the water removed in such drying process. (b) During the drying process, the air is cooled from 80 °C to 71 °C in passing through the dryer. If the latent heat of vaporization corresponding to a saturation temperature of 71 °C is 2331 kJ / kg for water, find the heat energy required to evaporate the water only. (c) Assume potato enters at 24 °C, which is also the ambient air temperature, and leaves at the same temperature as the exit air. The specific heat of potato is 3.43 kJ / (kg °C). Find the minimum heat energy required to raise the temperature of the potatoes. (d) 250 kg of steam at 70 kPa gauge is used to heat 49,800 cubic metre of air to 80 °C, and the air is cooled to 71 °C in passing through the dryer. If the latent heat of steam at 70 kPa gauge is 2283 kJ / kg, find the heat energy in steam. (e) Calculate the efficiency of the dryer based heat input and output, in drying air. Use the formula (Ti - To) / (Ti - Ta) where Ti is the inlet (high) air temperature into the dryer, To is the outlet air temperature from the dryer, and Ta is the ambient air temperature.
how to reduce COD from plant waste water closed circulation system
Explain the largest application for surfactants?
ENGINEERING ECONOMY - EXAMPLE 7.3 : There are 2 alternatives of investment. Choice 1 : A trader offers you an investment opportunity where your investment of A$15000 presently will be A$18000 after 4 years. Choice 2 : A bank offers you 5 % annual return for your initial investment of A$15000. Question a : What is the equivalent bank payment after 4 years? Question b : By using the concept of equivalence in engineering economy, which is the better choice, between 1 and 2, that will be more profitable after 4 years?
CHEMICAL ENERGY BALANCE - EXAMPLE 11.5 : According to Margules Equation, P = x(1) p(1) g(1) + x(2) p(2) g(2) for a two-component mixture where P is bubble pressure, x is mole fraction, p is saturation pressure, g is constant given by ln g(1) = x(2) A x(2). Find the value of A as a constant when P = 1.08 bar, p(1) = 0.82 bar, p(2) = 1.93 bar in a 50 : 50 mole fraction mixture. Estimate the pressure required to completely liquefy the 30 : 70 mixture using the same equation, by proving P = 1.39 bar. Take note that ln g(2) = x(1) A x(1), ln g(1) = x(2) A x(2).
When should one be concerned with the tube wall temperature on the cooling waterside of a shell and tube exchanger?
Should slurry pipes be sloped during horizontal runs?
What is the most common cause of solid size segregation in bulk solid systems?
Question 46 - In a steady state one dimensional conduction with no heat generation, the differential equation is d / dx (k dT / dx) = 0. Prove that T(x) = ax + b, where k, a and b are constants. (b) At x = 0, T = c and at x = L, T = d. Prove that T(x) = (d - c) x / L + c for boundary conditions.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)