Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


MICROBIOLOGICAL ENGINEERING - QUESTION 28.1 : In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.



MICROBIOLOGICAL ENGINEERING - QUESTION 28.1 : In the calculation of the growth of bacteria, colony f..

Answer / kangchuentat

MICROBIOLOGICAL ENGINEERING - ANSWER 28.1 : (a) Dilution = (final volume of mixture) / (initial volume of mixture). First dilution = ( 0.2 + 1.8 ) L / (0.2 L) = 10. Second dilution = first dilution x ( 0.2 + 1.8 ) L / (0.2 L) = 10 x 10 = 100. (b) 100 microlitres = 100 microlitres x 1 mL / (1000 microlitres) = 0.1 mL. CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). In the first plate, CFU / mL = 250 x 10 / 0.1 = 25000. In the second plate, CFU / mL = 23 x 100 / 0.1 = 23000. Average CFU / mL = (first plated value + second plated value) / 2 = (25000 + 23000) / 2 = 24000. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

Heat transfer: In a triple effect evaporator, the heat transfer for an evaporator is calculated as q = UA (TI - TF) where TI is the initial temperature, TF is the final temperature; U and A are constants. Given that heat transfer for the first evaporator : q(1) = UA (TI - TB); second evaporator : q(2) = UA (TB - TC); third evaporator : q(3) = UA (TC - TF) where q(x) is the heat transfer function, TB is the temperature of second inlet and TC is the temperature of third inlet, prove that the overall heat transfer Q = q(1) q(2) q(3) = UA (TI - TF).

1 Answers  


Explain some of the consequences of an undersized kettle type reboiler?

0 Answers  


How is waste heat boilers categorized?

0 Answers  


Question 72 - (a) According to United States Department of Agriculture (USDA) (http://ndb.nal.usda.gov/ndb/search/list, accessed 12 August 2016), 100 g of potatoes generate 77 kcal of energy. For raw tomatoes, 111 g have 18 kcal of energy. Question : How much energy will one gain if 150 g of heated potatoes are eaten with 200 g of raw tomatoes? (b) If 1 Calorie = 1 food Calorie = 1 kilocalorie and 1000 calories = 1 food Calorie, then how many Calories are there in 9600 calories? (c) According to a food package of potato chips, 210 Calories are produced per serving size of 34 g. In actual experiment of food calorimetry lab, 1.75 g of potato chips, when burnt, will produce 9.6 Calories. For each serving size of potato chip, find the difference of Calories between the actual experimental value and the value stated on the food package. (d) The specific heat of water is c = 1 cal / (g.K) where cal is calory, g is gram and K is Kelvin. Then what is the temperature rise of water, in degree Celsius, when 150 g of water is heated by 9600 calories of burning food?

1 Answers  


What is difference between Piping Standard & Piping Specification ?

0 Answers  


Explain how can viscosity affect the design of a mixer?

0 Answers  


Explain what are the affinity laws associated with dynamics pumps?

0 Answers  


Question 37 - Calculate the bubble temperature T at P = 85-kPa for a binary liquid with x(1) = 0.4. The liquid solution is ideal. The saturation pressures are Psat(1) = exp [ 14.3 - 2945 / (T + 224) ], Psat(2) = exp [ 14.2 - 2943 / (T + 209) ] where T is in degree Celsius. Please take note that x(1) + x(2) = 1. Please take note that y(1) + y(2) = 1, y(1) = [ x(1) * Psat(1) ] / P, y(2) = [ x(2) * Psat(2) ] / P, * is multiplication. P is in kPa.

1 Answers  


QUANTUM COMPUTING - EXAMPLE 32.4 : A system of linear congruences consists of 3 equations : X ≡ 1 (mod 2), X ≡ 3 (mod 3), X ≡ 4 (mod 5). X has positive values. (a)(i) List the values of these equations from 1 to approximately 40. (ii) Find the first smallest value and second smallest value of X. (iii) Guess the third smallest value of X. (b) Let X ≡ Aa (mod Ma), X ≡ Ab (mod Mb), X ≡ Ac (mod Mc). According to Chinese remainder theorem, X ≡ (Aa x Ya x Md + Ab x Yb x Me + Ac x Yc x Mf) [ mod (Ma x Mb x Mc) ]. (i) Show that Ma, Mb and Mc have the greatest common divisor of Ma x Mb x Mc. (ii) Find the values of Md, Me and Mf if Md = Mb x Mc, Me = Ma x Mc and Mf = Ma x Mb. (iii) Find the values of Ya, Yb and Yc if Ya = Remainder of (Md / Ma), Yb = Remainder of (Me / Mb) and Yc = Remainder of (Mf / Mc). (iv) Use Chinese remainder theorem to find X.

1 Answers  


Question 47 - In a cylinder with a hollow, let a is outside radius and b is the inside radius. In a steady state temperature distribution with no heat generation, the differential equation is (d / dr) (r dT / dr) = 0 where r is for radius and T is for temperature. (a) Integrate the heat equation above into T(r) in term of r. (b) At r = a, T = c; at r = b, T = d. Find the heat equation of T(r) in term of r, a, b, c, d.

1 Answers  


Chemical Engineering Unit Operation - Which of the sequence below represent a feasible flows of ethanol processing plants using cellulose as starting material? A. raw material --> heat exchanger --> distillation column --> reactor. B. reactor --> distillation column --> raw material --> heat exchanger. C. heat exchanger --> raw material --> distillation column --> reactor. D. raw material --> heat exchanger --> reactor --> distillation column. E. distillation column --> raw material --> reactor --> heat exchanger.

1 Answers  


REACTION ENGINEERING - EXAMPLE 13.2 : A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.

1 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)