What is the difference between multi grade filter and dual
media filter?
Answer / kamlesh dhatrak
Multigrade Sand Filter also consist of a vertical or
horizontal pressure vessel with a set of frontal pipe work
and valves, media consist of different sizes and grade mixed
and supported by layers of pebbles and gravels, a top
distributor to distribute the incoming water uniformly
throughout the cross section of the filter, and an under
drain system to collect filtered water.
This filter performs at a substantially higher specific flow
rate than conventional filters. The basic difference between
Pressure Sand Filter (PSF) and Multigrade Sand Filter (MGF)
are media used in vessel and velocity variation.
and
Dual media filter contain anthracite in combination with
sand supported by pebble and gravels. Theses filter consist
of a layer of anthracite (1.25-2.5mm) resting on a layer of
fine sand (1-1.5mm) Anthracite is coarse and has more dirt
holding capacity as compared to sand.
| Is This Answer Correct ? | 16 Yes | 4 No |
Anyone please tell me the relation between the m3/hr and kg/hr??...there is some relation to find volume??.
describe why you are interested in a career in the oil industry?
We are having proplem with the persperation smell in ETT/ECHO room in our cardiac hospital.The 2 Ton of AC is not conditioning the environment. We have to use exhaust fan to through out of the room bad air. Could anyone suggest how to coup with this effectively using chemical engineering. Any permanent solution to neutralise the bad smell.The Air freshners are not doing enough instead making a bad odour.
ENVIRONMENTAL ENGINEERING - QUESTION 22.1 : In order to predict the wastewater production, the population number has to be understood. The population data is : 72000 (for year 1961 or P-1961), 85000 (for year 1971 or P-1971), 110500 (for year 1981 or P-1981). (a) Find the average population increase, or [ (P-1981 - P-1971) + (P-1971 - P-1961) ] / 2. (b) Find the average percentage population increase, or [ (P-1981 - P-1971) / P-1971 + (P-1971 - P-1961) / P-1961 ] / (2) X 100. (c) Find the incremental increase or P-1981 - 2 (P-1971) + P-1961. (d) Let Po = P-1981. After 2 decades or n = 2, the population is P-2001. By using arithmetical increase method, find P-2001 = Po + n (Answer for a). (e) By using incremental increase method, find P-2001 = (Answer of d) + n (n + 1) (Answer of c) / 2. (f) By using geometrical increase method, find P-2001 = Po [ 1 + (Answer of b) / 100 ] ^ n where ^ is power sign, or 1 ^ 2 = 1 x 1 = 1. (g) If the actual P-2001 = 184000, which method of estimation is more accurate, based on your answer in (d), (e) and (f)?
What is g and gc in a bernoulli's theorem?
Question 35 – A mixture consists of benzene (B), toluene (T) and xylene (X). At a temperature of 353 K, the data of vapor pressures : B : 754.12, T : 289.71, X : 91.19. Unit is mm Hg. The pressure P is 0.5 atm. The value of k for each substance is k = (vapor pressure) / P. (a) Calculate k for B, T and X. Let L / V = 0.65. (b) By using the equation V = F / [ (L / V) + 1 ], find the value of V when F = 100, then what is the value of L?
i am a prefinal year student of polymer engineering .could you please send the latest question papers regarding entrace exam.
hai can anyone send me soft copy of o.p gupta or tell me downloading link please please at saify_0@hotmail.com
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.3 : (a) In the M / M / 1 queue that happens with randomness, let State 0 = the queue and server are empty, State 1 = the server is in use and the queue is empty, State 2 = the server is in use and 1 is in the queue, State 3 = the server is in use and 2 in the queue. Let P (0) = probability of State 0, P (1) = probability of State 1, P (2) = probability of State 2, P (3) = probability of State 3 and so on. If c = constant, P (1) = c P (0), P (2) = c [ c P (0) ], P (3) = c { c [ c P (0) ] }, write an equation that involves P (N), P (N + 1) and c. (b) Let L = market price of risk, r = riskless rate, m = expected return, s = volatility. Given that L = (m - r) / s related to oil prices, expected return = 12 %, s = 20 %, riskless rate = 8 %, calculate the market price of risk.
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.19 : In the purchase of a unit of engineering office, a loan has been made to a bank with the following details : Term N = 30 years; interest rate R = 8.07 % / year; security : primary residence; present value pv = $450000; salary = $75000 / year or $56000 / year after tax. (a) Let the discounted present value PV = [ 1 - 1 / (1 + r) ^ n ] / r for arrears, where r = interest rate of discount, n = number of payment, ^ = symbol for power. If the loan repayment was made monthly : (i) calculate the value of r where r = R / k and R is in decimal value; (ii) find the value of n where n = kN; (iii) estimate the value of k where k = number of repayment per year; (iv) calculate the value of PV based on the formula of discounted present value. (b) Calculate the monthly repayment of the loan, MR based on the following formula : pv = PV x MR. (c) Find the percentage of salary remains after paying the loan every month.
How can I evaluate the thermal relief requirements for double block-in of 98% sulfuric acid?
Question 83 - The United States of America Energy Information Administration reports the following emissions in million metric tons of carbon dioxide in the world for year 2012 : Natural gas : 6799, petroleum : 11695, coal : 13787. Coal-fired electric power generation emits around 2000 pounds of carbon dioxide for every megawatt hour generated, which is almost double the carbon dioxide released by a natural gas-fired electric plant per megawatt hour generated. If 1 metric ton = 1000 kg and 1 pound = 0.4536 kg, estimate the total energy generated by natural gas in the world for year 2012, in gigawatt hour.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)