ENVIRONMENTAL ENGINEERING - QUESTION 22.2 : Biochemical Oxygen Demand (BOD) could be calculated using the formula BOD = (DOi - DOf) (Vb / Vs) where Vb = Volume of bottle in ml, Vs = Volume of sample in ml, DOi = Initial dissolved oxygen in mg / L, DOf = Final dissolved oxygen in mg / L. (a) By using a bottle of Vb = 300 ml with sample Vs = 30 ml, find the BOD if DOi = 8.8 mg / L and DOf = 5.9 mg / L. (b) By using a bottle Vb = 600 mL with sample Vs = 100 mL, find the BOD if DOi = 8.8 mg / L and DOf = 4.2 mg / L. (c) Find the average BOD = [ Answer of (a) + Answer of (b) ] / 2. (d) If the BOD-5 test for (a) - (c) is run on a secondary effluent using a nitrification inhibitor, find the nitrogenous BOD (NBOD) = TBOD - CBOD. Let TBOD = 45 mg / L and CBOD = Answer of (c).
ENVIRONMENTAL ENGINEERING - ANSWER 22.2 : (a) BOD = (8.8 - 5.9) (300 / 30) = 29 mg / L. (b) BOD = (8.8 - 4.2) (600 / 100) = 27.6 mg / L. (c) BOD = (29 + 27.6) / 2 = 28.3 mg / L. (d) NBOD = 45 - 28.3 = 16.7 mg / L. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
What are the criteria’s involved in choosing mass balances for components?
Diffrence between centrifugal & recipocating pump?
Can large temperature differences in vaporizers cause operational problems?
Explain what are some good uses of low-grade steam at 12 atm and 1920c?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.9 : In the modelling of the total of n rolls of a dice by an engineering student, let D be the random outcome of rolling a dice once. (a) Find the probability of outcome of D = 1, 2, 3, 4, 5 and 6. (b) Find the average score of each rolling of a dice D. (c) Find the expected value, Sn of n rolls of a dice in term of n and D. A new dice has a value of D* = D - 3.5. (d) Find the values of D* for each volume of D = 1, 2, 3, 4, 5 and 6. (e) Find the equivalent model of Sn in term of n and D. (f) Find the expected value of D*.
hi all i have doe cheical engg, but i have to go for iob po interview so can anybody suggest me abt the kind of qns that can be asked.
0 Answers Indian Overseas Bank,
What is screen analysis and what are its applications in the chemical industry?
What diffrence between flush distillation & batch distillation ?
QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.4 : In a rigid rotor model in quantum chemistry, the moment of inertia I is given by an Equation E as I = Ma x La x La + Mc x Lc x Lc = m x L x L, where m = (Ma x Mc) / (Ma + Mc) and L = La + Lc, m is the reduced mass, Ma is the mass of a, Mc is the mass of c, La is the radius of a from point O, Lc is the radius of c from point O. Prove by simplest method that Equation E is wrong.
What are some good uses of low-grade steam at 12 atm and 1920c?
Question 49 - According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.
What is chemicals?
1 Answers Thirumalai Chemicals,
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)