QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.4 : In a rigid rotor model in quantum chemistry, the moment of inertia I is given by an Equation E as I = Ma x La x La + Mc x Lc x Lc = m x L x L, where m = (Ma x Mc) / (Ma + Mc) and L = La + Lc, m is the reduced mass, Ma is the mass of a, Mc is the mass of c, La is the radius of a from point O, Lc is the radius of c from point O. Prove by simplest method that Equation E is wrong.
QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - ANSWER 31.4 : Let Ma = 0 and Mc = 1 as assumption. Substitute them into Equation E as I = Ma x La x La + Mc x Lc x Lc = 0 + Lc x Lc = Lc x Lc. However, m = (0 x 1) / (0 + 1) = 0, then I = Lc x Lc, which is not equal to 0 but I = m x L x L = 0 x L x L = 0. Equation E is proven wrong. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
Solve the first order differential equation : (Z 1)(dy/dx) = xy in term of ln |y| = f(x). Z = (x)(x).
distance education chemical engineer degree aprooved courses any?
Question 34 – In the distillation of binary systems by Mc Cabe Thiele method, the equation for the line of top section is given by y = [ R / (R + 1) ] x + XD / (R + 1). 2 points on the line are (0.99, 0.99) and (0, 0.36). Find the reflux ratio of R and XD.
if the length of a pipe doubled what will be the effect on Pressure in line?
How can one quickly estimate the additional pressure drop to be introduced with more tube passes?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.10 : Let D be the random outcome of rolling a dice once. A new dice has values of D* = D - 3.5. There is a total of n rolls of a dice. (a) Find the variance for D* by using the formula 6 V = [ D* (D = 1) ] [ D* (D = 1) ] + [ D* (D = 2) ] [ D* (D = 2) ] + [ D* (D = 3) ] [ D* (D = 3) ] + [ D* (D = 4) ] [ D* (D = 4) ] + [ D* (D = 5) ] [ D* (D = 5) ] + [ D* (D = 6) ] [ D* (D = 6) ]. (b) Calculate the standard deviation of D* as a square root of V. (c) Another new dice has values of D** = kD*. (i) Find the value of k so that D** has a standard deviation of 1. (ii) Find the values of D** for each outcome of D = 1, 2, 3, 4, 5 and 6, when the standard deviation is 1. (iii) Given that the average score of a dice is 3.5, find the equivalent, new and improved model of a dice, Sn in term of n and D**. (iv) Find the expected value of D** as the average of D**.
Question 51 - A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.
How much steam required for 1MW power production form 30 bar G super heated steam(350 C), outlet of turbine 4.5 bar
Are there any general rules that should be considered when designing a slurry piping system?
REACTION ENGINEERING - EXAMPLE 13.3 : The half-life for first order reaction could be described in the differential equation dC / dt = -kC where k is a constant, C is concentration and t is time. (a) Find the equation of C as a function of t. (b) Find the half life for such reaction or the time required to reduce 50 % of the initial concentration, where k = 0.139 per minute. (c) When the initial concentration Co is 16 mol / cubic metre, how long does the reaction required to achieve the final concentration of 1 mol / cubic metre?
What type of heat exchangers are most commonly used for a large-scale plant-cooling loop using seawater as the utility?
Question 88 - In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)