QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.4 : In a rigid rotor model in quantum chemistry, the moment of inertia I is given by an Equation E as I = Ma x La x La + Mc x Lc x Lc = m x L x L, where m = (Ma x Mc) / (Ma + Mc) and L = La + Lc, m is the reduced mass, Ma is the mass of a, Mc is the mass of c, La is the radius of a from point O, Lc is the radius of c from point O. Prove by simplest method that Equation E is wrong.
QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - ANSWER 31.4 : Let Ma = 0 and Mc = 1 as assumption. Substitute them into Equation E as I = Ma x La x La + Mc x Lc x Lc = 0 + Lc x Lc = Lc x Lc. However, m = (0 x 1) / (0 + 1) = 0, then I = Lc x Lc, which is not equal to 0 but I = m x L x L = 0 x L x L = 0. Equation E is proven wrong. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
Is This Answer Correct ? | 0 Yes | 0 No |
Question 33 – By using Excel program either on laptop or desktop PC, solve the differential equation dy / dx = -2y + x + 4 with h = 0.005, initial values : x = 0, y = 1. The 4th order Runge-Kutta method provides : y(N + 1) = y(N) + (1/6) (k1 + 2k2 +2k3 + k4), k1 = h [ -2y(N) + x(N) + 4 ], k2 = h { -2 [ y(N) + k1 / 2 ] + x(N) + h / 2 + 4 }, k3 = h { -2 [ y(N) + k2 / 2 ] + x(N) + h / 2 + 4 }, k4 = h { -2 [ y(N) + k3 ] + x(N) + h + 4 }. What is the value of y at x = 0.5?
Which book I should refer for designing heat exchangers and reactors?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.20 : Assume an engineer buys a $1 bond in period T while the nominal interest rate is R. The inflation rate at T + 1 is anticipated to be I. (a) If the bond is redeemed in period T + 1, how much money will the buyer engineer receive, in term of R, which is not affected by inflation? (b) Find the present value, PV of the proceeds from the bond, in term of R and I. (c) If the bond is redeemed in period T + 1, calculate the real growth or real value of the money that the buyer engineer will receive, in term of r = real interest rate, which is affected by inflation. (d) From the answers in (b) and (c), find the values of x, y and z in the following Fisher equation : (1 + x) = (1 + y) / (1 + z), in term of r, R and I.
PROCESS DESIGN - EXAMPLE 21.2 : The names of the flow streams could be represented by : H1 for first hot stream, H2 for second hot stream, C1 for first cold stream, C2 for second cold stream. Data of supply temperature Ts in degree Celsius : 150 for H1, 170 for H2, 30 for C1, 30 for C2. Data of target temperature Tt in degree Celsius : 50 for H1, 169 for H2, 150 for C1, 40 for C2. Data of heat capacity Cp in kW / degree Celsius : 3 for H1, 360 for H2, 3 for C1, 30 for C2. (a) Find the enthalpy changes, dH for all streams of flow H1, H2, C1 and C2 in the unit of kW. Take note of the formula dH = (Cp) (Tt - Ts). (b) Match the hot streams H1 and H2 with the suitable cold streams C1 and C2 to achieve the maximum energy efficiency.
What diffrence between flush distillation & batch distillation ?
send previousyear question paper for ongc gt 2011 chemical engineering written exam
QUANTUM BIOLOGY - EXAMPLE 33.3 : In quantum biology, microtubule is used to store information in a cell. At temperature of T = 300 K, measured current I in a probe is directly proportional to the supplied voltage V, when passing through a microtubule with resistance R. (a) Form an equation of V as a function of I involving k as a constant. (b) If the microtubule has R = 1 ohm at such condition, find the value of V when I = 2 A. Hint : Ohm's law. (c) Find the relationship of k as a function of R.
Hi, Please give me chemical engineering paper for IOCL exam for entire written exam, GD and personel interview model questions to my email id. (chemistnathan@rediffmail.com) Rgds, Ragu
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.16 : An engineer would like to invest his money in a home, business and bond. The implicit interest payment frequency is monthly for home loans, quarterly for business loans; semi annually for bonds. A generalized mathematical formula to calculate I = interest rate equivalence is I = (1 + i / N) ^ N - 1 where i = annual interest rate, N = number of payment per year. (a) Calculate the value of N for : (i) home loans; (ii) business loans; (iii) bonds. (b) For i = 0.08, find the value of I for : (i) home loans; (ii) business loans; (iii) bonds.
Explain how can one estimate how the friction factor changes in heat exchanger tubes with a change in temperature?
Question 56 - The kinetic behavior of an enzyme could be described using Michalis - Menten equation : Vo = Vmax [S] / (Km + [S]). Derive this equation from [ES] = [E]total [S] / (Km + [S]), Vmax = Kcat [E]total, Vo = Kcat [ES].
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.17 : In the engineering calculations of interest rate caused by inflation, General Inflation Effect and Fisher Effect may be considered. Let I = inflation rate, R = nominal interest rate, r = real interest rate. According to Fisher Effect, (1 + R) = (1 + r) (1 + I). According to General Inflation Effect, r = R - I. (a) If I = 0.1 for all effects, both the values of R and r in the Fisher Effect are the same as R and r in the General Inflation Effect, find the values of R and r. (b) If R has the same value caused by both General Inflation Effect and Fisher Effect, find the possible values of R, r and I in term of R etc.