What is the maximum steam pressure that can be generated?
No Answer is Posted For this Question
Be the First to Post Answer
QUANTUM COMPUTING - EXAMPLE 32.7 : If | ± > = 0.707 ( | 0 > ± | 1 > ), prove that | Ψ (t = 0) > = | 0 > = 0.707 ( | + > + | - > ).
Why chlorine cylinders are laid down horizontally?
What is the best way to handle bend or turns in slurry piping systems?
pleas tell me about chemical engineering apptitude test..
Where the Induced draft, forced draft & balanced draft furnace are to be used? Selection of furnaces are based on which criteria?
What is a good relation to use for calculating tube bundle diameters?
What is a cstr and what are its basic assumptions?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.6 : In a random walk, a stochastic process starts off with a score of A. This is a score for a chemical engineering test. At each discrete event, there is probability p chance you will increase your score by B and a (1 - p) chance you will decrease your score by C. The event happens T times. Let D = expected value of score. (a) Form an equation of D as a function of A, B, C, T and p. (b) Find the value of D if A = 60, B = 1, C = -1, T = 50, p = 0.5.
Water flows through a pipe with circular cross sectional area at the rate of V / t = 80 L / s where V is the volume and t is time. Let Av = 80 L / s where A is cross sectional area and v is velocity of fluid. For point 1, the radius of the pipe is 16 cm. For point 2, the radius of the pipe is 8 cm. Find (a) the velocity at point 1; (b) the velocity at point 2; (c) the pressure at point 2 by using Bernoulli’s equation where P Rgy 0.5 RV = constant. P is the pressure, R = density of fluid, V = square of fluid’s velocity, g = gravitational constant of 9.81 N / kg and y = 2 m = difference of height at 2 points. The pressure of point 1 is 180 kPa.
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.10 : Let D be the random outcome of rolling a dice once. A new dice has values of D* = D - 3.5. There is a total of n rolls of a dice. (a) Find the variance for D* by using the formula 6 V = [ D* (D = 1) ] [ D* (D = 1) ] + [ D* (D = 2) ] [ D* (D = 2) ] + [ D* (D = 3) ] [ D* (D = 3) ] + [ D* (D = 4) ] [ D* (D = 4) ] + [ D* (D = 5) ] [ D* (D = 5) ] + [ D* (D = 6) ] [ D* (D = 6) ]. (b) Calculate the standard deviation of D* as a square root of V. (c) Another new dice has values of D** = kD*. (i) Find the value of k so that D** has a standard deviation of 1. (ii) Find the values of D** for each outcome of D = 1, 2, 3, 4, 5 and 6, when the standard deviation is 1. (iii) Given that the average score of a dice is 3.5, find the equivalent, new and improved model of a dice, Sn in term of n and D**. (iv) Find the expected value of D** as the average of D**.
In a Furnace arch pressure is more than Hearth pressure,then how flue gas travels to stack
Is there any way to repair a valve that is passing leaking internally without taking our process offline?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)