How much water is lost through a commercial cooling tower system with a throughput of about 600 gpm?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

How to estimate the efficiency of a pump?

2 Answers   OGDCL,


Question 100 - (a) Time evolution in Heisenberg picture, according to Ehrenfest theorem is m (d / dt) < r > = < p >, where m = mass, r = position, p = momentum of a particle. If v = velocity, prove that m < v > = < p >. (b) Lande g-factor is given by Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. If Gl = 1 and under approximation of Gs = 2, prove by calculation that Gj = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ].

1 Answers  


Explain global warming from a common man's and an engineer's perspective?

0 Answers  


print a pattern of abcdcba abc cba ab ba a a ab ba abc cba abcdcba

0 Answers  


What are advantages using hollow shaft impeller?

0 Answers  






Hi, I want to validate an analytical procedure of a specified impurity, but this impurity is unavailable for me. can I use the API instead of impurity in the linearity test? in Which reference can I find such information?

0 Answers   Pharma,


what is the melting point of ash?what is value of ash in crude oil?

1 Answers  


What is the purpose of capacitor?

0 Answers  


QUANTUM COMPUTING - EXAMPLE 32.3 : A system of linear congruences consists of 3 equations : X ≡ 1 (mod 3), X ≡ 3 (mod 5), X ≡ 4 (mod 6). X has positive values. (a) List the values of these equations from 1 to 35. Then find the minimum value of X. (b)(i) Find the least common multiple (LCM) of b = 3, 5 and 6 where X ≡ a (mod b). (ii) If b - a has the same value of all equations above, then X + (b - a) is divisible by LCM. Find the value of minimum value of X via LCM division.

1 Answers  


What are the various utilities of the process plant?

0 Answers  


CHEMICAL ENERGY BALANCE - EXAMPLE 11.1 : Please match the term A - E with the stated definition i - v. Terms : A. Yield. B. Selectivity. C. Relative saturation. D. Molal saturation. E. Absolute saturation. Definitions : i. (moles of desired product formed) / (moles that would have been formed if there were no side reactions and the limiting reactant has reacted completely); ii. (moles of desired product formed) / (moles of undesired product formed); iii. (relative humidity 40 % means partial pressure of water vapour equals 4 / 10 of the vapour pressure of water at the system temperature); iv. (moles of vapour) / (moles of vapour dry gas); v. (mass of vapour) / (mass of dry gas).

1 Answers  


What are the types of membranes used in RO water treatement plant?

2 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)