Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


QUANTUM COMPUTING - EXAMPLE 32.2 : (a) If | 001 > = | 1 >, | 111 > = | 7 >, find the 2 possible values of ( | 001 > + | 1 > + | 7 > ) ( | 111 > ). (b) In quantum money, a duplicate will have probability P of passing the verification test of a bank, if the total number of photons on the bank note is N. The would be counterfeiter has a probability p of success in duplicating the quantum money correctly for each photon. Guess the relationship of P, p and N as a mathematical formula involving natural logarithm ln.



QUANTUM COMPUTING - EXAMPLE 32.2 : (a) If | 001 > = | 1 >, | 111 > = | 7 >, find the 2 p..

Answer / kangchuentat

QUANTUM COMPUTING - ANSWER 32.2 : (a) First answer : ( | 001 > + | 1 > + | 7 > ) ( | 111 > ) = ( | 1 > + | 1 > + | 7 > ) ( | 111 > ) = ( | 9 > ) ( | 111 > ) = | 999 >. Second answer : ( | 001 > + | 1 > + | 7 > ) ( | 111 > ) = ( | 1 > + | 1 > + | 7 > ) ( | 7 > ) = ( | 9 > ) ( | 7 > ) = | 63 >. (b) If N = 1, then P = p. If N = 2, then P = p power 2. If N = 3, then P = p power 3. For N, P = p power N, ln P = ln (p power N), then ln P = N ln p. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

In a furnace, 2 chemical reactions are happening – 1 mole of solid carbon reacts with 1 mole of oxygen gas to generate 1 mole of carbon dioxide gas; 1 mole of solid carbon reacts with 0.5 mole of oxygen gas to generate 1 mole of carbon monoxide gas. In a given process, 100 kmol of carbon is burned in a furnace. (a) Calculate the theoretical oxygen gas needed by assuming that all the carbon is burned completely to carbon dioxide gas. (b) Calculate the theoretical air needed by assuming that all the carbon is burned completely to carbon dioxide gas and there is only 21 % of oxygen gas. (c) Determine the amount of air required (in kmol) if 50 % excess oxygen gas must be satisfied for (a) and (b). (d) It has latter been found that 20 % of the carbon undergoes incomplete combustion resulting to carbon monoxide gas production. The rest of the carbon undergoes complete combustion. Calculate the total oxygen gas required stoichiometrically based on the actual process.

1 Answers  


R sir, i need placement paper of last years of IOCL in chemical sream...... send me the question paper as soon as possible on my email address.

18 Answers   ABC, IOCL, ONGC,


Thyristor related applications

1 Answers  


Are you having any experience in antibody designing?

0 Answers  


Is there a handy way to determine if a horizontal pipe is running full if the flow rate is known?

0 Answers  


Explain can large temperature differences in vaporizers cause operational problems?

0 Answers  


What are the advantages of using a ball mill over other conventional methods of crushing?

0 Answers  


where can i get previous question papers of GATE in chemical engineering

7 Answers   CPCL,


QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.7 : (a) The correct statement about both the average value of position (<x>) and momentum (<p>) of a 1-dimensional harmonic oscillator wavefunction is <x> = <p> = 1 - x. Find the value of x. (b) The probabilities of finding a particle around points A, B and C in the wavefunction y = f(x) are P(A), P(B) and P(C) respectively. Coordinates are A (3,5), B (4,-10) and C (6,7). Arrange P(A), P(B) and P(C) in term of a < b < c, when | y-coordinate | signifies the probability.

1 Answers  


HEAT TRANSFER - EXAMPLE 5.3 : In a cylinder with a hollow, let a is outside radius and b is the inside radius. In a steady state temperature distribution with no heat generation, the differential equation is (d / dr) (r dT / dr) = 0 where r is for radius and T is for temperature. (a) Integrate the heat equation above into T(r) in term of r. (b) At r = a, T = c; at r = b, T = d. Find the heat equation of T(r) in term of r, a, b, c, d.

1 Answers  


when selecting psv(pressure safety valve),what are all things we have to keep it in mind?

4 Answers   Qasco,


What are the various utilities of the process plant?

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)