how does the properties of an element changes by increasing
protons and electrons?
No Answer is Posted For this Question
Be the First to Post Answer
Question 42 - According to Margules Equation, P = x(1) p(1) g(1) + x(2) p(2) g(2) for a two-component mixture where P is bubble pressure, x is mole fraction, p is saturation pressure, g is constant given by ln g(1) = x(2) A x(2). Find the value of A as a constant when P = 1.08 bar, p(1) = 0.82 bar, p(2) = 1.93 bar in a 50 : 50 mole fraction mixture. Estimate the pressure required to completely liquefy the 30 : 70 mixture using the same equation, by proving P = 1.39 bar. Take note that ln g(2) = x(1) A x(1), ln g(1) = x(2) A x(2).
Question 75 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18. The fraction of polymer chain X of 3 different monomers a, b and c in a polymer are Xa = 0.5, Xb = 0.3 and Xc = 0.2. (i) Calculate number average molecular weight by using the formula Ma Xa + Mb Xb + Mc Xc. (ii) Calculate weight average molecular weight by using the formula (Ma Xa Ma + Mb Xb Mb + Mc Xc Mc) / (Ma Xa + Mb Xb + Mc Xc). (iii) Calculate the polydispersity by using the answer in (ii) divided by answer in (i). (iv) If the molecular weight of repeat unit is 12, calculate the degree of polymerization by using the formula (Ma Xa + Mb Xb + Mc Xc) / (molecular weight of repeat unit).
what r the question asked in interview of gate,is it related to course?
Explain what types of metals are typically removed via chemical precipitation?
what is density
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.2 : (a) In the pricing of a coupon bond, the formula is : P = c / (1 + r) + (c + B) / [ (1 + r) (1 + r) ] for 2 years to maturity, where c = annual coupon payment (in dollars, not a percent), B = par value, P = purchase price. Five years ago someone bought a 20 year coupon bond and would like to get rid of it now : A coupon rate of 7 %, it matures in exactly 2 years, par value is $1000, current interest rate is 5 %. (i) Find the value of c. (ii) Find the value of r or interest rate. (iii) Find the value of P. (iv) Guess the formula for P when the maturity period is 3 years, if such formula for 1 year duration is P = (c + B) / (1 + r). (b) In lemma of Ito on a Forward, recall that a forward contract is priced at : ln F = ln S + rT. Find the value of F in 5 decimal points when S = $100, r = interest rate = 0.05 / year, T = duration = 1 year.
REACTION ENGINEERING - EXAMPLE 13.3 : The half-life for first order reaction could be described in the differential equation dC / dt = -kC where k is a constant, C is concentration and t is time. (a) Find the equation of C as a function of t. (b) Find the half life for such reaction or the time required to reduce 50 % of the initial concentration, where k = 0.139 per minute. (c) When the initial concentration Co is 16 mol / cubic metre, how long does the reaction required to achieve the final concentration of 1 mol / cubic metre?
What is difference between a Flue Gas Analyzer and Exhaust Gas Analyzer ?
Chemical Engineering Material Balance - Three hundred gallons of a mixture containing 75.0 wt % ethanol and 25 wt % water (mixture specific gravity = 0.877) and a quantity of a 40.0 wt % ethanol - 60 wt % water mixture (specific gravity = 0.952) are blended to produce a mixture containing 60.0 wt % ethanol. The specific gravity of a substance is the ratio of density of a substance compared to the density of water. The symbol of weight percent is wt %. (a) Estimate the specific gravity of the 60 % mixture by assuming that y = mx c where y is wt % ethanol, x is mixture specific gravity. Values for m and c are constants. (b) Determine the required volume of the 40 % mixture.
What are angle of repose applications in the chemical industry?
What are the some common problems associated with dilute phase pneumatic conveying?
ENGINEERING ECONOMY - EXAMPLE 7.1 : In engineering economy, the future value of first year is FV = PV (1 + i). For second year it is FV = PV (1 + i) (1 + i). For third year it is FV = PV (1 + i) (1 + i)(1 + i) where FV = future value, PV = present value, i = interest rate per period, n = the number of compounding periods. By induction, what is the future value of $1000 for 5 years at the interest rate of 6 %?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)