QUANTUM COMPUTING - EXAMPLE 32.10 : In quantum computing, the conversion of Control Not (CNOT) gate in two input quantum bit gate could be decribed as : | 00 > --> | 00 >, | 01 > --> | 01 >, | 10 > --> | 11 >, | 11 > --> | 10 >. If | P > = 0.707 ( | 01 > - | 11 > ), find the value of CNOT | P >.



QUANTUM COMPUTING - EXAMPLE 32.10 : In quantum computing, the conversion of Control Not (CNOT) gate ..

Answer / kangchuentat

QUANTUM COMPUTING - ANSWER 32.10 : Since | 01 > --> | 01 > and | 11 > --> | 10 >, then CNOT | P > = CNOT [ 0.707 ( | 01 > - | 11 > ) ] = 0.707 ( | 01 > - | 10 > ). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

i need last year question paper of GATE exam of chemical stream.but i failed i geting exam papers.soits humble request to u that if any body found last years GATE exam paper of chemical stream then send it to on this mail address.i shall be thankful to u for this. mail address:- sachin_4255@yahoo.co.in thank you.

0 Answers  


Hallow everybody, we want to know in a NPk fertilizer process plant (Bulk Blender) we are in doubt if use square or rectangular hopper jus to avoid the vault effect durin the flow of of raw material like Phosphorus, Potasium and zeolite..Please any advise will be appresated Isdray

0 Answers  


ENGINEERING PHYSICS - EXAMPLE 30.5 : (a) Let | A > = (Aa Ab Ac), | B > = (Ba Bb Bc), | C > = (Ca Cb Cc). Find | A > + | C > - | B > in term of Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb and Cc. (b) Let d | E > = d (Ea Eb Ec) = (d Ea d Eb d Ec). If | E > = (6 7 8), find the value of 10 | E >.

1 Answers  


BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.1 : In the application of Theory of Spectrometry in spectrophotometer, let n = N x C x V, V = A x t, e = a x N where n = number of molecules, N = Avogadro's number, V = volume of cuvette, A = area of cuvette, t = thickness of cuvette, C = concentration of fluid in the cuvette, e = extinction coefficient, a = effective area of molecule. (a) By using calculus in dI = -I x a x N x C x dt, prove that ln (I / Io) = -a x N x C x t, where dI is the small difference in I and dt is the small difference in t. I = intensity of light. Io = initial intensity of light. (b) Show by calculations that ln (Io / I) = e x C x t based on the answer in the previous question (a). (c) Find the equation of log (Io / I) as a function of e, C and t based on the answer in the previous question (b).

1 Answers  


What particle sizes are electrostatic precipitators used to remove?

0 Answers  






QUANTUM COMPUTING - EXAMPLE 32.5 : In quantum teleportation, let (C0 + D1) (00 + 11) = C000 + C011 + D100 + D111. Ba = 00 + 11, Bc = 10 + 01, Be = 00 - 11, Bm = 10 - 01. (a) Find the values of 00, 01, 10 and 11 in term of Ba, Bc, Be and Bm. (b) Prove by calculation that (C0 + D1) (00 + 11) = 0.5 [ Ba (C0 + D1) + Bc (C1 + D0) + Be (C0 - D1) + Bm (-C1 + D0) ].

1 Answers  


Question 102 - (a) As an approximation, let v = Zc / 137 where v is the radial velocity for 1 s electron of an element, c is the speed of light, Z is the atomic number. For gold with Z = 79, find the radial velocity of its 1 s electron, in term of c and percentage of the speed of light. (b) As an approximation, let A x A = 1 - Z x Z / 18769 where A is the ratio of the relativistic and non-relativistic Bohr radius. Find the value of A.

1 Answers  


what is meaning of pid how it is useing controlers

4 Answers  


According to Shockley equation, the I – V characteristic of a diode is approximated by I = IS [ exp (nVD / VT) – 1 ]. For silicon, let the reverse bias saturation current IS as 0.000000000001. If n is ideality factor with value of 1.5, VT as thermal voltage drop of 0.026 V at room temperature, what is the value of current I that passes through the silicon diode in the heater of evaporator when the forward voltage drop VD = 0.026 V? Please take note that exp is the exponential function with e(1) = 2.718, e(2) = 7.389.

1 Answers  


How can the particle size distribution be determined in a given bulk solid?

0 Answers  


why traction voltage is 25kv

0 Answers  


What are flameless oxidizers?

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)