Question 53 - In the purchase of a machine with a period n = 8.5 years, the minimum attractive rate of return, i = 12 %, the cost P = $55000, F = $4000 is the salvage, annual maintenance A = $3500. The return of the investment or equivalent uniform annual benefit is $15000. The equivalent uniform annual cost is P (A / P, i, n) + A - F (A / F, i, n). The investment is considered acceptable only when equivalent uniform annual benefit is greater than the equivalent uniform annual cost. From the compound interest table, (A / P, i = 12 %, n = 8 years) = 0.2013, (A / P, i = 12 %, n = 9 years) = 0.1877, (A / F, i = 12 %, n = 8 years) = 0.0813, (A / F, i = 12 %, n = 9 years) = 0.0677. Prove by calculations whether the investment above is acceptable.
Answer / kang chuen tat (malaysia - pen
Answer 53 - (A / P, i = 12 %, n = 8.5 years) = (0.2013 + 0.1877) / 2 = 0.1945. (A / F, i = 12 %, n = 8.5 years) = (0.0813 + 0.0677) / 2 = 0.0745. Equivalent uniform annual cost = P (A / P, i = 12 %, n = 8.5 years) + A - F (A / F, i = 12 %, n = 8.5 years) = $55000 (0.1945) + $3500 - $4000 (0.0745) = $13899.5 < $15000 (equivalent uniform annual benefit). The investment is proven acceptable. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.4 : In a rigid rotor model in quantum chemistry, the moment of inertia I is given by an Equation E as I = Ma x La x La + Mc x Lc x Lc = m x L x L, where m = (Ma x Mc) / (Ma + Mc) and L = La + Lc, m is the reduced mass, Ma is the mass of a, Mc is the mass of c, La is the radius of a from point O, Lc is the radius of c from point O. Prove by simplest method that Equation E is wrong.
What are the some common problems associated with dilute phase pneumatic conveying?
Question 76 - Let C% be the fractional crystallinity, Rs = density of sample, Ra = density of amorphous form and Rc = density of crystalline form. In a polymer, these unknowns could be related by the equation C% = (Rc / Rs) (Rs - Ra) / (Rc - Ra). (a) Find the equation of Rc as a function of C%, Rs and Ra. (b) Two samples of a polymer, C and D exist. For sample C, C% = 0.513 when Rs = 2.215 unit. For sample D, C% = 0.742 when Rs = 2.144 unit. Both samples C and D have the same values of Ra and Rc. Find the values of Ra and Rc in 6 decimal places.
Question 90 - In the calculation of the growth of bacteria, absorbance, A in spectrophotometry is used. According to Beer-Lambert Law, A = e x l x c where A is the absorbance of the solution (no unit), l is the distance of light travels through the solution (in cm), e is the molar absorptivity or the molar extinction coefficient [ in L / (mol.cm) ]. For a particular solute and fixed path length : As / Ao = Cs / Co where Ao is the observed signal for a known concentration Co, and As is the observed signal for a sample concentration Cs. (a) For a cell concentration of 560 cells / mL, a spectrophotometre gives an absorbance reading of 1.0. A mixture of concentration 3600000 cells / mL can be diluted in several operations, with each operation having a dilution of 1:20. How many dilutions should be made so that the concentration of this mixture can be calculated within a range of A = 0.0 to 1.0. (b) In another experiment, a sample tube of 1 cm in width is used. Let A = 0.06 and e = 0.0012 ml / (cell.cm). Find the cell concentration of the sample.
Are there any alternatives to scraping a shell and tube if a capacity increase will make the pressure drop across the exchanger too large?
A distillation column separates 10000 kg / hr of a mixture containing equal mass of benzene and toluene. The product D recovered from the condenser at the top of the column contains 95 % benzene, and the bottom W from the column contains 96 % toluene. The vapor V entering the condenser from the top of the column is 8000 kg / hr. A portion of the product from the condenser is returned to the column as reflux R, and the rest is withdrawn as the final product D. Assume that V, R, and D are identical in composition since V is condensed completely. Find the ratio of the amount refluxed R to the product withdrawn D. Hint : Solve the simultaneous equations as follow in order to find the answer (R / D) : 10000 = D + W; 10000 (0.5) = D (0.95) + W (0.04); 8000 = R + D.
hello sir..iam keen to sit for iocl interview..please forward sample iocl questions to my id: kunal_kv06@yahoo.co.in
Define a surfactant?
hi can u send me all d technical qus pepar of DRDO?my email id is palmzk@gmail.com
design calculations for reactor
plz send the interview questions in the written test asked by hindustan petroleum corporation ltd.Iam a b>tech in chemical engineering.My written test is on feb 2008.urgent plz.send the questions to indra_bits10@yahoo.com
which is the major cement producing state in western India ?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)