Can anyone help me to find out the book where all chemical
engineer problem is solved.
Answers were Sorted based on User's Feedback
Answer / khelan
there is no such book, as our problems are more from the practical side, and it's only experience that helps.
| Is This Answer Correct ? | 2 Yes | 0 No |
Answer / shirish
unit operations of chemical engineering by warren mcabe used
for basic problems
& chemical engineering thermodyanamics by K.Narayan...
| Is This Answer Correct ? | 0 Yes | 0 No |
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.1 : (i) In the pricing of engineering bonds, 3 sets of data for Portfolio Value, Probability, Senior Tranche and Junior Tranche are : $2000, 81 %, $1000, $1000; $1000, 18 %, $1000, $0; $0, 1 %, $0, $0. By assuming independent defaults, find the price for : (a) Senior Tranche; (b) Junior Tranche. (ii) Assuming statistical independence of the values in the sample, the standard deviation of the mean (S) is related to the standard deviation of the distribution (s) by : N x S x S = s x s, where N is the number of observations in the sample used to estimate the mean. In a drug development project, let s = 1. Find the value of S if such a similar project is performed 100 times.
What is gibbs free energy?
What is minimum fluidization velocity?
Question 61 – A biochemical trolley of mass 15 kg is towing a trailer of mass 5 kg along a straight horizontal pathway. The trailer and the trolley are connected by a light inextensible tow-bar. The engine of the trolley exerts a driving force of magnitude 100 N. The trailer and the trolley experience resistances of magnitude 10 N and 30 N respectively. (a) Form 2 equations with unknowns T and a, that represents the equilibrium for the 2 systems of the trolley and trailer. (b) Solve the simultaneous equations from the 2 equations that are obtained in part (a) of this question. T is the tension of the tow-bar and a is the acceleration.
Explain various protein purification techniques?
Question 55 - The differential equation is 3 dy / dt + 2y = 1 with y(0) = 1. (a) The Laplace transformation, L for given terms are : L (dy / dt) = sY(s) - y(0), L(y) = Y(s), L(1) = 1 / s. Use such transformation to find Y(s). (b) The initial value theorem states that : When t approaches 0 for a function of y(t), it is equal to a function of sY(s) when s approaches infinity. Use the initial value theorem as a check to the answer found in part (a).
Name some guidelines for designing for liquid and gas velocities in process plant piping?
What is the maximum recommend pipe velocity for dry and wet gases?
A 1.5 weight % aqueous salt solution is concentrated to 4 weight % in a single-effect evaporator. The feed rate to the evaporator is F = 7500 kg / h and the feed is at 85 degree Celsius. The evaporator operates at 1 bar. By assuming that only pure solvent of water exists in the form of vapor from the feed, calculate the flow rate of such vapor V.
What is a solvent?
What is load?
ENGINEERING MATERIAL - EXAMPLE 12.2 : At 150 degree Celsius, a mixture of 40 wt % Sn and 60 wt % Pb present, forming phases of alpha and beta. Chemical composition of Sn at each phase : CO (overall) : 40 %, CA (alpha) : 11 %, CB (beta) : 99 %. (a) State 2 reasons for the existences of alpha and beta phases for the mixture of Sn - Pb at 150 degree Celsius. (b) By using Lever Rule, calculate the weight fraction of each phase for alpha, WA = Q / (P + Q) and beta, WB = P / (P + Q) where Q = CB - CO and P = CO - CA.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)