Explain how can you prevent bridging in a dilute phase pneumatic conveying system?



Explain how can you prevent bridging in a dilute phase pneumatic conveying system?..

Answer / bharath chellaboyina

• Manufacturers of these systems recommend bin agitation or blowing air into the top of the feeding bin.
• These methods can prevent fine particle from bridging near the rotators valve.
• Two types of particles that are especially prone to bridging include titanium dioxide and calcined- kaolin clay.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

I want to know that what type of questions may be come for fertilizer company for written exam?

0 Answers  


Explain under what circumstances are vortex flowmeters the most accurate?

0 Answers  


Are there any special considerations to be taken into account for combustion ammonia?

0 Answers  


FOOD ENGINEERING - QUESTION 23.2 : (a) A dryer reduces the moisture content of 100 kg of a potato product from 80 % to 10 % moisture. Find the mass of the water removed in such drying process. (b) During the drying process, the air is cooled from 80 °C to 71 °C in passing through the dryer. If the latent heat of vaporization corresponding to a saturation temperature of 71 °C is 2331 kJ / kg for water, find the heat energy required to evaporate the water only. (c) Assume potato enters at 24 °C, which is also the ambient air temperature, and leaves at the same temperature as the exit air. The specific heat of potato is 3.43 kJ / (kg °C). Find the minimum heat energy required to raise the temperature of the potatoes. (d) 250 kg of steam at 70 kPa gauge is used to heat 49,800 cubic metre of air to 80 °C, and the air is cooled to 71 °C in passing through the dryer. If the latent heat of steam at 70 kPa gauge is 2283 kJ / kg, find the heat energy in steam. (e) Calculate the efficiency of the dryer based heat input and output, in drying air. Use the formula (Ti - To) / (Ti - Ta) where Ti is the inlet (high) air temperature into the dryer, To is the outlet air temperature from the dryer, and Ta is the ambient air temperature.

1 Answers  


iN CONFINED SPACE ENTRY HOW MUCH OXYGEN MAY BE REQURIED

6 Answers  






BIOPROCESS ENGINEERING - EXAMPLE 14.2 : An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.

1 Answers  


What are the criteria’s involved in choosing mass balances for components?

0 Answers  


Can anyone tell me how to calculate the quantity of a third component added in an azeotropic batch distillation of a known quantity of azeotropic mixture?

1 Answers  


i m a frsh chemical engineer now i m confuse to attend the interview so anybody pls send model question papers to this christ_vivek33@yahoo.com

0 Answers   HPCL,


what is defferance between tubular & automotive plate battery

0 Answers  


Question 100 - (a) Time evolution in Heisenberg picture, according to Ehrenfest theorem is m (d / dt) < r > = < p >, where m = mass, r = position, p = momentum of a particle. If v = velocity, prove that m < v > = < p >. (b) Lande g-factor is given by Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. If Gl = 1 and under approximation of Gs = 2, prove by calculation that Gj = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ].

1 Answers  


Question 34 – In the distillation of binary systems by Mc Cabe Thiele method, the equation for the line of top section is given by y = [ R / (R + 1) ] x + XD / (R + 1). 2 points on the line are (0.99, 0.99) and (0, 0.36). Find the reflux ratio of R and XD.

1 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)