Why would you choose java in embedded systems?
No Answer is Posted For this Question
Be the First to Post Answer
What is endianness of a system and how do different systems communicate with each other?
Explain the concept of separation of concerns?
Program to print the 32 number in form of binary, Hexa and ASCI.
Tell me what is the need for an infinite loop in embedded systems?
What is the task of the pre-processor?
What does DMA address will deal with?
How i/o devices are classified for embedded system?
Why is it better to use multi-threading polling instead of a single threading model?
What are the rules followed by mutexes?
This program is in verilog and need help to get it working correctly. This is the code i have so far. Please help. Simple testbench would be great. Thanks\ 'define vend_a_drink {D,dispense,collect} = {IDLE,2'b11}; module drink_machine(nickel_in, dime_in, quarter_in, collect, nickel_out, dime_out, dispense, reset, clk) ; parameter IDLE=0,FIVE=1,TEN=2,TWENTY_FIVE=3, FIFTEEN=4,THIRTY=5,TWENTY=6,OWE_DIME=7; input nickel_in, dime_in, quarter_in, reset, clk; output collect, nickel_out, dime_out, dispense; reg collect, nickel_out, dime_out, dispense; reg [2:0] D, Q; /* state */ // synopsys state_vector Q always @ ( nickel_in or dime_in or quarter_in or reset ) begin nickel_out = 0; dime_out = 0; dispense = 0; collect = 0; if ( reset ) D = IDLE; else begin D = Q; case ( Q ) IDLE: if (nickel_in) D = FIVE; else if (dime_in) D = TEN; else if (quarter_in) D = TWENTY_FIVE; FIVE: if(nickel_in) D = TEN; else if (dime_in) D = FIFTEEN; else if (quarter_in) D = THIRTY; TEN: if (nickel_in) D = FIFTEEN; else if (dime_in) D = TWENTY; else if (quarter_in) 'vend_a_drink; TWENTY_FIVE: if( nickel_in) D = THIRTY; else if (dime_in) 'vend_a_drink; else if (quarter_in) begin 'vend_a_drink; nickel_out = 1; dime_out = 1; end FIFTEEN: if (nickel_in) D = TWENTY; else if (dime_in) D = TWENTY_FIVE; else if (quarter_in) begin 'vend_a_drink; nickel_out = 1; end THIRTY: if (nickel_in) 'vend_a_drink; else if (dime_in) begin 'vend_a_drink; nickel_out = 1; end else if (quarter_in) begin 'vend_a_drink; dime_out = 1; D = OWE_DIME; end TWENTY: if (nickel_in) D = TWENTY_FIVE; else if (dime_in) D = THIRTY; else if (quarter_in) begin 'vend_a_drink; dime_out = 1; end OWE_DIME: begin dime_out = 1; D = IDLE; end endcase end end always @ (posedge clk ) begin Q = D; end endmodule
Why does pre-emptive multi-threading used to solve the central controller problem?
Mention what are the essential components of embedded system?