How are artificial neural networks different from normal computers?
No Answer is Posted For this Question
Be the First to Post Answer
How neural networks became a universal function approximators?
The network that involves backward links from output to the input and hidden layers is called as ____. a) Self organizing maps b) Perceptrons c) Recurrent neural network d) Multi layered perceptron
Which is the similar operation performed by the drop-out in neural network?
. Why are linearly separable problems of interest of neural network researchers? a) Because they are the only class of problem that network can solve successfully b) Because they are the only class of problem that Perceptron can solve successfully c) Because they are the only mathematical functions that are continue d) Because they are the only mathematical functions you can draw
An auto-associative network is: a) a neural network that contains no loops b) a neural network that contains feedback c) a neural network that has only one loop d) a single layer feed-forward neural network with pre-processing
Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results. a) True – this works always, and these multiple perceptrons learn to classify even complex problems. b) False – perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do c) True – perceptrons can do this but are unable to learn to do it – they have to be explicitly hand-coded d) False – just having a single perceptron is enough
What are combination, activation, error, and objective functions?
What is simple artificial neuron?
Which of the following is true? Single layer associative neural networks do not have the ability to: (i) perform pattern recognition (ii) find the parity of a picture (iii)determine whether two or more shapes in a picture are connected or not a) (ii) and (iii) are true b) (ii) is true c) All of the mentioned d) None of the mentioned
What can you do with an nn and what not?
A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be: a) 238 b) 76 c) 119 d) 123
What is the difference between a Feedforward Neural Network and Recurrent Neural Network?
AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6)