MICROBIOLOGICAL ENGINEERING - QUESTION 28.2 : A hemocytometer is a device that is used for counting cells. In an engineering experiment, 100 microlitres of cell suspension is diluted with 50 microlitres of Trypan blue dye. Only death cells appear blue in color when stained with the dye. There are 57 cells detected in a hemocytometer, where 5.3 % of them appear blue when the chamber of the meter is placed under a microscope. Each square of a chamber can contain 0.0001 mL of liquid. (a) Calculate the number of viable cells. (b) The cells occupied 5 squares. Calculate the average number of viable cells / square. (c) Calculate the dilution factor of the cell suspension by using the formula : Dilution = final volume / initial volume. (d) Calculate the concentration of viable cells / mL by using the formula : Concentration = (Average number of viable cells / square) x dilution x (square / volume).
MICROBIOLOGICAL ENGINEERING - ANSWER 28.2 : (a) Number of death cells = Total cells x % of death cells / 100 = 57 x 5.3 / 100 = 3.021 rounded to 3 cells. Number of viable cells = Total cells - number of death cells = 57 - 3 = 54 cells. (b) Average number of viable cells / square = 54 / 5 = 10.8 cells / square. (c) Dilution = final volume / initial volume = (100 + 50) microlitres / 100 microlitres = 1.5. (d) Concentration = (Average number of viable cells / square) x dilution x (square / volume) = 10.8 cells x 1.5 x (1 / 0.0001 mL) = 162000 cells / mL. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
ELECTRICAL TECHNOLOGY - EXAMPLE 16.1 : According to Shockley equation, the I - V characteristic of a diode is approximated by I = IS [ exp (nVD / VT) - 1 ]. For silicon, let the reverse bias saturation current IS as 0.000000000001. If n is ideality factor with value of 1.5, VT as thermal voltage drop of 0.026 V at room temperature, what is the value of current I that passes through the silicon diode in the heater of evaporator when the forward voltage drop VD = 0.026 V? Please take note that exp is the exponential function with e(1) = 2.718, e(2) = 7.389.
is extractive distillationӞH
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.36 : Du Pont analysis is used to perform calculation on Return On Equity (ROE) for an engineering organization. Let Net Income = A; Earning Before Tax (EBT) = B; Earning Before Interest, Tax (EBIT) = C; Sales = D; Assets = E; Equity = F. In 5-step Du Pont formula, let Tax Burden = G = A / B; Interest Burden = H = B / C = 1.04; EBIT % = I = C / D = 0.27; Asset Turnover = J = D / E = 0.66; Leverage = K = E / F = 2.66; ROE = L = A / F. If (1 / G) = (4 / 3) : (a) find the value of L; (b) calculate the values of A, B, C, E and F when D = $1500; (c) verify the answer (b) is correct by using the answer (a).
POLYMER ENGINEERING - QUESTION 24.1 : The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18. The fraction of polymer chain X of 3 different monomers a, b and c in a polymer are Xa = 0.5, Xb = 0.3 and Xc = 0.2. (i) Calculate number average molecular weight by using the formula Ma Xa + Mb Xb + Mc Xc. (ii) Calculate weight average molecular weight by using the formula (Ma Xa Ma + Mb Xb Mb + Mc Xc Mc) / (Ma Xa + Mb Xb + Mc Xc). (iii) Calculate the polydispersity by using the answer in (ii) divided by answer in (i). (iv) If the molecular weight of repeat unit is 12, calculate the degree of polymerization by using the formula (Ma Xa + Mb Xb + Mc Xc) / (molecular weight of repeat unit).
What is the iodine value of spent carbon?How iodine value is used to determine the power of carbon to adsorb?
How can you determine the largest impeller that a pump can handle?
What are some guidelines for designing for liquid and gas velocities in process plant piping?
HOw to derive reynolds equation?
Question 69 - A well delivers 225 US-gallons per minute of water to a chemical plant during normal system operation. (a) Calculate its flowrate in the unit of mega US-gallon per day or MGD. (b) The following formula is written next to the chlorine feed point : (chlorine feed rate, lb / day) = (flowrate, MGD) X (dose, mg / L) x (8.34). If this formula is correct, then what should the chlorine feed rate to be in pounds per day (lb / day) if the desired dose is 2 mg / L. (c) Prove by calculations that the constant 8.34 in the formula next to the chlorine feed point is correct. Let 1 US-gallon = 3.78541 L and 1 mg = 0.0000022046 pound.
If flow rate of natural gas mixture in sweating gas unite is 460000 m3/day Can it be converted into mole/day?
viscosty of crude use for petroliun?
What does capacitor load means? How does it connect?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)