. Why are linearly separable problems of interest of neural network researchers?
a) Because they are the only class of problem that network can solve successfully
b) Because they are the only class of problem that Perceptron can solve successfully
c) Because they are the only mathematical functions that are continue
d) Because they are the only mathematical functions you can draw
Which is the similar operation performed by the drop-out in neural network?
Neuro software is: a) A software used to analyze neurons b) It is powerful and easy neural network c) Designed to aid experts in real world d) It is software used by Neuro surgeon
2 Answers Bihar State Power Holding Company Limited BSPHCL,
How artificial neural networks can be applied in future?
A perceptron is: a) a single layer feed-forward neural network with pre-processing b) an auto-associative neural network c) a double layer auto-associative neural network d) a neural network that contains feedback
What is artificial intelligence neural networks?
Which of the following is true? (i) On average, neural networks have higher computational rates than conventional computers. (ii) Neural networks learn by example. (iii) Neural networks mimic the way the human brain works. a) All of the mentioned are true b) (ii) and (iii) are true c) (i), (ii) and (iii) are true d) None of the mentioned
. Why are linearly separable problems of interest of neural network researchers? a) Because they are the only class of problem that network can solve successfully b) Because they are the only class of problem that Perceptron can solve successfully c) Because they are the only mathematical functions that are continue d) Because they are the only mathematical functions you can draw
Explain in detail Neural Networks?
What are the applications of a Recurrent Neural Network (RNN)?
Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results. a) True – this works always, and these multiple perceptrons learn to classify even complex problems. b) False – perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do c) True – perceptrons can do this but are unable to learn to do it – they have to be explicitly hand-coded d) False – just having a single perceptron is enough
What is the role of activation functions in a Neural Network?
Who is concerned with nns?
AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6)