How many different binary trees and binary search trees can
be made from three nodes that contain the key values 1, 2 & 3?
Answers were Sorted based on User's Feedback
Answer / aisha
Binary tree :- 30 as follows
1 1 2 2 3 3
/ \ / \ / \ / \ / \ / \
2 3 3 2 1 3 3 1 1 2 2 1
1 1 1 1 1 1 1 1
/ / / / \ \ \ \
2 3 2 3 2 3 2 3
/ / \ \ / / \ \
3 2 3 2 3 2 3 2
2 2 2 2 2 2 2 2
/ / / / \ \ \ \
1 3 1 3 1 3 1 3
/ / \ \ / / \ \
3 1 3 1 3 1 3 1
3 3 3 3 3 3 3 3
/ / / / \ \ \ \
2 1 2 1 2 1 2 1
/ / \ \ / / \ \
1 2 1 2 1 2 1 2
Binary search tree :-5 as follows
1 1 2 3 3
\ \ / \ / /
2 3 1 3 1 2
\ / \ /
3 2 2 1
Is This Answer Correct ? | 149 Yes | 22 No |
Answer / gautham
The Catalan Numbers should give an answer.. The answer is
C(3)= 5.
Is This Answer Correct ? | 48 Yes | 21 No |
Answer / poornakala
for binary search tree, no of trees, (2^n)-n... here 8-3=5
trees... u can draw n see...
for binary tree, no of trees n(2^n)-n here 3*5=15...
replace node in each bst with other two values and see....
Is This Answer Correct ? | 72 Yes | 48 No |
Answer / sreekumar
Nubmerof Nodes| BT Possible | BST Possible|
==============+================+==============
1 | 1 | 1
--------------+----------------+---------------
2 | 2 | 2
--------------+----------------+---------------
3 | 6 | 5
--------------+----------------+---------------
4 | 24 | 14
--------------+----------------+--------------
. | . | .
--------------+----------------+--------------
| |
| | 2n 1
| | C * ------
n | n! | n (n+1)
------------------------------------------------------
C=Combinations
n!,2nCn /(n+1)
Is This Answer Correct ? | 57 Yes | 35 No |
Answer / shekhar
(2n C n) / (n+1) is the Number of BST if N is the number of
integer/value;
Is This Answer Correct ? | 17 Yes | 8 No |
Binary search trees care only about the inorder traversal of
the tree. And specifying inorder traversal of a tree doesnt
mean there is a unique representation of it.
5 Binary search trees are possible
Is This Answer Correct ? | 13 Yes | 9 No |
Answer / baljinder
1oth answer is xactly correst ie,BST=5 & BT=30
Is This Answer Correct ? | 5 Yes | 1 No |
Answer / vipul
number of binary search tree= (2n)!/{n!*(n+1)!}
and number of binary tree=(2n)!/(n+1)!
Is This Answer Correct ? | 3 Yes | 0 No |
Answer / shweta
for binary tree ans is 5, the general formula is (2^n)-n
for binary search tree no. of tree possible is 3.
as root data can be either 1, 2 or 3
Is This Answer Correct ? | 39 Yes | 38 No |
Answer / babugct
All the above answers are wrong............
please post some correct answer...
as far as my concern,,,
no.of binary trees=n!*(2^(n)-n)
no.of bst's=2^(n)-n...
pls inform if wrong
Is This Answer Correct ? | 7 Yes | 6 No |
Differentiate stack from array?
Is null allowed in list?
Is array part of collection framework?
write a program to show the insertion and deletion of an element in an array using the position
Can we add duplicate keys in a hashmap? What will happen if we attempt to add duplicate values?
How is any data structure application is classified among files?
What thread means?
Why do we use trees in data structures?
Why do we need linked lists?
What are the major data structures used in the rdbms?
For searches. Which one is most preferred: array list or linked list?
What do you mean by balanced trees?