How many different binary trees and binary search trees can
be made from three nodes that contain the key values 1, 2 & 3?
Answers were Sorted based on User's Feedback
Answer / aisha
Binary tree :- 30 as follows
1 1 2 2 3 3
/ \ / \ / \ / \ / \ / \
2 3 3 2 1 3 3 1 1 2 2 1
1 1 1 1 1 1 1 1
/ / / / \ \ \ \
2 3 2 3 2 3 2 3
/ / \ \ / / \ \
3 2 3 2 3 2 3 2
2 2 2 2 2 2 2 2
/ / / / \ \ \ \
1 3 1 3 1 3 1 3
/ / \ \ / / \ \
3 1 3 1 3 1 3 1
3 3 3 3 3 3 3 3
/ / / / \ \ \ \
2 1 2 1 2 1 2 1
/ / \ \ / / \ \
1 2 1 2 1 2 1 2
Binary search tree :-5 as follows
1 1 2 3 3
\ \ / \ / /
2 3 1 3 1 2
\ / \ /
3 2 2 1
| Is This Answer Correct ? | 149 Yes | 22 No |
Answer / gautham
The Catalan Numbers should give an answer.. The answer is
C(3)= 5.
| Is This Answer Correct ? | 48 Yes | 21 No |
Answer / poornakala
for binary search tree, no of trees, (2^n)-n... here 8-3=5
trees... u can draw n see...
for binary tree, no of trees n(2^n)-n here 3*5=15...
replace node in each bst with other two values and see....
| Is This Answer Correct ? | 72 Yes | 48 No |
Answer / sreekumar
Nubmerof Nodes| BT Possible | BST Possible|
==============+================+==============
1 | 1 | 1
--------------+----------------+---------------
2 | 2 | 2
--------------+----------------+---------------
3 | 6 | 5
--------------+----------------+---------------
4 | 24 | 14
--------------+----------------+--------------
. | . | .
--------------+----------------+--------------
| |
| | 2n 1
| | C * ------
n | n! | n (n+1)
------------------------------------------------------
C=Combinations
n!,2nCn /(n+1)
| Is This Answer Correct ? | 57 Yes | 35 No |
Answer / shekhar
(2n C n) / (n+1) is the Number of BST if N is the number of
integer/value;
| Is This Answer Correct ? | 17 Yes | 8 No |
Binary search trees care only about the inorder traversal of
the tree. And specifying inorder traversal of a tree doesnt
mean there is a unique representation of it.
5 Binary search trees are possible
| Is This Answer Correct ? | 13 Yes | 9 No |
Answer / baljinder
1oth answer is xactly correst ie,BST=5 & BT=30
| Is This Answer Correct ? | 5 Yes | 1 No |
Answer / vipul
number of binary search tree= (2n)!/{n!*(n+1)!}
and number of binary tree=(2n)!/(n+1)!
| Is This Answer Correct ? | 3 Yes | 0 No |
Answer / shweta
for binary tree ans is 5, the general formula is (2^n)-n
for binary search tree no. of tree possible is 3.
as root data can be either 1, 2 or 3
| Is This Answer Correct ? | 39 Yes | 38 No |
Answer / babugct
All the above answers are wrong............
please post some correct answer...
as far as my concern,,,
no.of binary trees=n!*(2^(n)-n)
no.of bst's=2^(n)-n...
pls inform if wrong
| Is This Answer Correct ? | 7 Yes | 6 No |
What happens when arraylist is full?
Who invented data structure?
What is difference between static and dynamic array?
Can you list out the areas in which data structures are applied extensively?
Which data structures are used in bfs and dfs algorithm?
Construct a doubly linked list using a single pointer in each node?
Describe linear probing with an example.
what are the applications that use Linked lists?
In an AVL tree, at what condition the balancing is to be done?
Give a basic algorithm for searching a binary search tree?
Define heap order property?
How many links are there in a binary tree of N nodes?