Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...

What are all important modules in python reuired for a data science ?

Answer Posted / praveen

Here's a comprehensive list of essential Python modules for data science:

*Core Modules:*

1. NumPy (np) - Numerical computations
2. Pandas (pd) - Data manipulation and analysis
3. Matplotlib (plt) - Data visualization
4. Scikit-learn (sklearn) - Machine learning
5. SciPy - Scientific computing

*Data Manipulation and Analysis:*

1. Pandas-datareader (web data retrieval)
2. Openpyxl (Excel file handling)
3. CSV, JSON, and XML (data import/export)

*Data Visualization:*

1. Seaborn (visualization based on Matplotlib)
2. Plotly (interactive visualizations)
3. Bokeh (interactive visualizations)
4. Geopandas (geospatial data visualization)

*Machine Learning and Deep Learning:*

1. TensorFlow (tf) - Deep learning
2. Keras - Deep learning
3. PyTorch - Deep learning
4. Scikit-learn (sklearn) - Machine learning
5. LightGBM - Gradient boosting
6. XGBoost - Gradient boosting

*Statistical Analysis:*

1. Statsmodels - Statistical modeling
2. PyMC3 - Bayesian modeling
3. Scipy.stats - Statistical functions

*Data Preprocessing and Feature Engineering:*

1. Scikit-image (image processing)
2. NLTK (natural language processing)
3. SpaCy (natural language processing)
4. Gensim (topic modeling)

*Big Data and Distributed Computing:*

1. Apache Spark - Big data processing
2. Dask - Parallel computing
3. Joblib - Parallel computing

*Other Essential Modules:*

1. IPython - Interactive shell
2. Jupyter Notebook - Interactive coding environment
3. PyCharm, VSCode, or Spyder - IDEs
4. Git - Version control

*Domain-Specific Modules:*

1. Bioinformatics: Biopython, Scikit-bio
2. Finance: Pandas-datareader, Zipline
3. Geospatial: Geopandas, Folium
4. Natural Language Processing: NLTK, SpaCy
5. Computer Vision: OpenCV, Scikit-image

*Tips:*

1. Install modules using pip or conda.
2. Keep your modules up-to-date.
3. Explore documentation and tutorials for each module.
4. Practice using modules on real-world projects.

*Resources:*

1. Python Data Science Handbook (book)
2. DataCamp (online courses)
3. Kaggle (competitions and tutorials)
4. GitHub (open-source projects)

Mastering these modules will provide a solid foundation for data science tasks in Python.

Is This Answer Correct ?    0 Yes 0 No



Post New Answer       View All Answers


Please Help Members By Posting Answers For Below Questions

Write a coding in find a largest among three numbers?

821


Explain about lambda in python?

883


Do you know what are the optional statements that can be used inside a block in python?

868


What is the method does join() in python belong?

934


How do you split a list into evenly sized chunks?

858


How lists is differentiated from tuples?

1054


How many name spaces are defined in python?

977


How can you get the google cache age of any url or web page?

830


What are the built-in data-types in python?

870


Can a constructor be inherited?

841


What does none type mean in python?

855


What is complex type in python?

907


What is format () in python?

798


Explain about assertions in python?

985


What is none python?

838