Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...

What are all important modules in python reuired for a data science ?

Answer Posted / praveen

Here's a comprehensive list of essential Python modules for data science:

*Core Modules:*

1. NumPy (np) - Numerical computations
2. Pandas (pd) - Data manipulation and analysis
3. Matplotlib (plt) - Data visualization
4. Scikit-learn (sklearn) - Machine learning
5. SciPy - Scientific computing

*Data Manipulation and Analysis:*

1. Pandas-datareader (web data retrieval)
2. Openpyxl (Excel file handling)
3. CSV, JSON, and XML (data import/export)

*Data Visualization:*

1. Seaborn (visualization based on Matplotlib)
2. Plotly (interactive visualizations)
3. Bokeh (interactive visualizations)
4. Geopandas (geospatial data visualization)

*Machine Learning and Deep Learning:*

1. TensorFlow (tf) - Deep learning
2. Keras - Deep learning
3. PyTorch - Deep learning
4. Scikit-learn (sklearn) - Machine learning
5. LightGBM - Gradient boosting
6. XGBoost - Gradient boosting

*Statistical Analysis:*

1. Statsmodels - Statistical modeling
2. PyMC3 - Bayesian modeling
3. Scipy.stats - Statistical functions

*Data Preprocessing and Feature Engineering:*

1. Scikit-image (image processing)
2. NLTK (natural language processing)
3. SpaCy (natural language processing)
4. Gensim (topic modeling)

*Big Data and Distributed Computing:*

1. Apache Spark - Big data processing
2. Dask - Parallel computing
3. Joblib - Parallel computing

*Other Essential Modules:*

1. IPython - Interactive shell
2. Jupyter Notebook - Interactive coding environment
3. PyCharm, VSCode, or Spyder - IDEs
4. Git - Version control

*Domain-Specific Modules:*

1. Bioinformatics: Biopython, Scikit-bio
2. Finance: Pandas-datareader, Zipline
3. Geospatial: Geopandas, Folium
4. Natural Language Processing: NLTK, SpaCy
5. Computer Vision: OpenCV, Scikit-image

*Tips:*

1. Install modules using pip or conda.
2. Keep your modules up-to-date.
3. Explore documentation and tutorials for each module.
4. Practice using modules on real-world projects.

*Resources:*

1. Python Data Science Handbook (book)
2. DataCamp (online courses)
3. Kaggle (competitions and tutorials)
4. GitHub (open-source projects)

Mastering these modules will provide a solid foundation for data science tasks in Python.

Is This Answer Correct ?    0 Yes 0 No



Post New Answer       View All Answers


Please Help Members By Posting Answers For Below Questions

What is pytables?

848


Are numpy arrays faster than lists?

882


What is docstring in Python?

940


What is raise keyword do in python exception handling?

863


Will class members accessible by instances of class?

915


Explain finally keyword?

911


Tell me what are the built-in type does python provides?

844


Explain about classes in strings?

838


What is a frozen set in python?

1006


What is the best web framework for Python?

893


What is an elif in python?

811


What is the difference between pickling vs unpickling?

926


Why we are using a python dictionary?

942


Is python a shell?

859


How to generate random numbers in python?

1064