What are all important modules in python reuired for a data science ?
Answer / praveen
Here's a comprehensive list of essential Python modules for data science:
*Core Modules:*
1. NumPy (np) - Numerical computations
2. Pandas (pd) - Data manipulation and analysis
3. Matplotlib (plt) - Data visualization
4. Scikit-learn (sklearn) - Machine learning
5. SciPy - Scientific computing
*Data Manipulation and Analysis:*
1. Pandas-datareader (web data retrieval)
2. Openpyxl (Excel file handling)
3. CSV, JSON, and XML (data import/export)
*Data Visualization:*
1. Seaborn (visualization based on Matplotlib)
2. Plotly (interactive visualizations)
3. Bokeh (interactive visualizations)
4. Geopandas (geospatial data visualization)
*Machine Learning and Deep Learning:*
1. TensorFlow (tf) - Deep learning
2. Keras - Deep learning
3. PyTorch - Deep learning
4. Scikit-learn (sklearn) - Machine learning
5. LightGBM - Gradient boosting
6. XGBoost - Gradient boosting
*Statistical Analysis:*
1. Statsmodels - Statistical modeling
2. PyMC3 - Bayesian modeling
3. Scipy.stats - Statistical functions
*Data Preprocessing and Feature Engineering:*
1. Scikit-image (image processing)
2. NLTK (natural language processing)
3. SpaCy (natural language processing)
4. Gensim (topic modeling)
*Big Data and Distributed Computing:*
1. Apache Spark - Big data processing
2. Dask - Parallel computing
3. Joblib - Parallel computing
*Other Essential Modules:*
1. IPython - Interactive shell
2. Jupyter Notebook - Interactive coding environment
3. PyCharm, VSCode, or Spyder - IDEs
4. Git - Version control
*Domain-Specific Modules:*
1. Bioinformatics: Biopython, Scikit-bio
2. Finance: Pandas-datareader, Zipline
3. Geospatial: Geopandas, Folium
4. Natural Language Processing: NLTK, SpaCy
5. Computer Vision: OpenCV, Scikit-image
*Tips:*
1. Install modules using pip or conda.
2. Keep your modules up-to-date.
3. Explore documentation and tutorials for each module.
4. Practice using modules on real-world projects.
*Resources:*
1. Python Data Science Handbook (book)
2. DataCamp (online courses)
3. Kaggle (competitions and tutorials)
4. GitHub (open-source projects)
Mastering these modules will provide a solid foundation for data science tasks in Python.
Is This Answer Correct ? | 0 Yes | 0 No |
What are the benefits of using python?
Is monkey patching considered good programming practice?
How memory is managed in python?
How to concatenate two lists in python?
How does raw_input work in python 3?
What is the speciality of python?
What is the procedure to extract values from the object used in python?
What are literals in python?
Do python classes need init?
I am from non technical Background. In how many days I can learn the python? and What I need to do for that?
Define encapsulation in python?
What is automation in python?