What are all important modules in python reuired for a data science ?
Answer / praveen
Here's a comprehensive list of essential Python modules for data science:
*Core Modules:*
1. NumPy (np) - Numerical computations
2. Pandas (pd) - Data manipulation and analysis
3. Matplotlib (plt) - Data visualization
4. Scikit-learn (sklearn) - Machine learning
5. SciPy - Scientific computing
*Data Manipulation and Analysis:*
1. Pandas-datareader (web data retrieval)
2. Openpyxl (Excel file handling)
3. CSV, JSON, and XML (data import/export)
*Data Visualization:*
1. Seaborn (visualization based on Matplotlib)
2. Plotly (interactive visualizations)
3. Bokeh (interactive visualizations)
4. Geopandas (geospatial data visualization)
*Machine Learning and Deep Learning:*
1. TensorFlow (tf) - Deep learning
2. Keras - Deep learning
3. PyTorch - Deep learning
4. Scikit-learn (sklearn) - Machine learning
5. LightGBM - Gradient boosting
6. XGBoost - Gradient boosting
*Statistical Analysis:*
1. Statsmodels - Statistical modeling
2. PyMC3 - Bayesian modeling
3. Scipy.stats - Statistical functions
*Data Preprocessing and Feature Engineering:*
1. Scikit-image (image processing)
2. NLTK (natural language processing)
3. SpaCy (natural language processing)
4. Gensim (topic modeling)
*Big Data and Distributed Computing:*
1. Apache Spark - Big data processing
2. Dask - Parallel computing
3. Joblib - Parallel computing
*Other Essential Modules:*
1. IPython - Interactive shell
2. Jupyter Notebook - Interactive coding environment
3. PyCharm, VSCode, or Spyder - IDEs
4. Git - Version control
*Domain-Specific Modules:*
1. Bioinformatics: Biopython, Scikit-bio
2. Finance: Pandas-datareader, Zipline
3. Geospatial: Geopandas, Folium
4. Natural Language Processing: NLTK, SpaCy
5. Computer Vision: OpenCV, Scikit-image
*Tips:*
1. Install modules using pip or conda.
2. Keep your modules up-to-date.
3. Explore documentation and tutorials for each module.
4. Practice using modules on real-world projects.
*Resources:*
1. Python Data Science Handbook (book)
2. DataCamp (online courses)
3. Kaggle (competitions and tutorials)
4. GitHub (open-source projects)
Mastering these modules will provide a solid foundation for data science tasks in Python.
Is This Answer Correct ? | 0 Yes | 0 No |
What causes static?
What are the basic data types supported by python?
What packages in the standard library, useful for data science work, do you know?
What is the proper way to say good bye to python?
How do you check the presence of the key in python dictionary?
How to remove spaces from a string in Python?
What is the best notepad?
Understanding python super() with __init__() methods?
How do you merge one dictionary with the other?
What is the process to run sub-process with pipes that connect both input and output?
How variables are declared in python?
Does netflix use python?