Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


How are layers counted?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More AI Neural Networks Interview Questions

What is the role of activation functions in a Neural Network?

0 Answers  


What is a neural network and what are some advantages and disadvantages of such a network?

0 Answers  


How human brain works?

0 Answers  


Describe the structure of artificial neural networks?

0 Answers  


Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results. a) True – this works always, and these multiple perceptrons learn to classify even complex problems. b) False – perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do c) True – perceptrons can do this but are unable to learn to do it – they have to be explicitly hand-coded d) False – just having a single perceptron is enough

1 Answers  


Why is the XOR problem exceptionally interesting to neural network researchers? a) Because it can be expressed in a way that allows you to use a neural network b) Because it is complex binary operation that cannot be solved using neural networks c) Because it can be solved by a single layer perceptron d) Because it is the simplest linearly inseparable problem that exists.

1 Answers  


How many kinds of nns exist?

0 Answers  


What is the difference between a Feedforward Neural Network and Recurrent Neural Network?

0 Answers  


How artificial neural networks can be applied in future?

0 Answers  


A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be: a) 238 b) 76 c) 119 d) 123

1 Answers  


List some commercial practical applications of artificial neural networks?

0 Answers  


A perceptron adds up all the weighted inputs it receives, and if it exceeds a certain value, it outputs a 1, otherwise it just outputs a 0. a) True b) False c) Sometimes – it can also output intermediate values as well d) Can’t say

1 Answers  


Categories
  • AI Algorithms Interview Questions AI Algorithms (74)
  • AI Natural Language Processing Interview Questions AI Natural Language Processing (96)
  • AI Knowledge Representation Reasoning Interview Questions AI Knowledge Representation Reasoning (12)
  • AI Robotics Interview Questions AI Robotics (183)
  • AI Computer Vision Interview Questions AI Computer Vision (13)
  • AI Neural Networks Interview Questions AI Neural Networks (66)
  • AI Fuzzy Logic Interview Questions AI Fuzzy Logic (31)
  • AI Games Interview Questions AI Games (8)
  • AI Languages Interview Questions AI Languages (141)
  • AI Tools Interview Questions AI Tools (11)
  • AI Machine Learning Interview Questions AI Machine Learning (659)
  • Data Science Interview Questions Data Science (671)
  • Data Mining Interview Questions Data Mining (120)
  • AI Deep Learning Interview Questions AI Deep Learning (111)
  • Generative AI Interview Questions Generative AI (153)
  • AI Frameworks Libraries Interview Questions AI Frameworks Libraries (197)
  • AI Ethics Safety Interview Questions AI Ethics Safety (100)
  • AI Applications Interview Questions AI Applications (427)
  • AI General Interview Questions AI General (197)
  • AI AllOther Interview Questions AI AllOther (6)