Which is true for neural networks?
a) It has set of nodes and connections
b) Each node computes it’s weighted input
c) Node could be in excited state or non-excited state
d) All of the mentioned
How are nns related to statistical methods?
What learning rate should be used for backprop?
Neural Networks are complex ______________ with many parameters. a) Linear Functions b) Nonlinear Functions c) Discrete Functions d) Exponential Functions
Which of the following is true? Single layer associative neural networks do not have the ability to: (i) perform pattern recognition (ii) find the parity of a picture (iii)determine whether two or more shapes in a picture are connected or not a) (ii) and (iii) are true b) (ii) is true c) All of the mentioned d) None of the mentioned
How artificial neurons learns?
What are combination, activation, error, and objective functions?
What is Pooling in CNN and how does it work?
How are weights initialized in a network?
What are the disadvantages of artificial neural networks?
Which is the similar operation performed by the drop-out in neural network?
What are neural networks and how do they relate to ai?
What is back propagation? a) It is another name given to the curvy function in the perceptron b) It is the transmission of error back through the network to adjust the inputs c) It is the transmission of error back through the network to allow weights to be adjusted so that the network can learn. d) None of the mentioned
AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6)