NATURAL GAS ENGINEERING - QUESTION 26.2 : (a) The Hyperion sewage plant in Los Angeles burns 8 million cubic feet of natural gas per day to generate power in United States of America. If 1 metre = 3.28084 feet, then how many cubic metres of such gas is burnt per hour? (b) A reservoir of natural gas produces 50 mole % methane and 50 mole % ethane. At zero degree Celsius and one atmosphere, the density of methane gas is 0.716 g / L and the density of ethane gas is 1.3562 mg / (cubic cm). The molar mass of methane is 16.04 g / mol and molar mass of ethane is 30.07 g / mol. (i) Find the mass % of methane and ethane in the natural gas. (ii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the gases are ideal where final volume of the gas mixture is the sum of volume of the individual gases at constant temperature and pressure. (iii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the final mass of the gas mixture is the sum of mass of the individual gases. Assume the gases are ideal where mole % = volume % at constant pressure and temperature.
NATURAL GAS ENGINEERING - ANSWER 26.2 : (a) 1 foot = (1 / 3.28084) metre = 0.3048 metre, 1 cubic foot = 0.3048 x 0.3048 x 0.3048 cubic metre = 0.0283 cubic metre, 8 million cubic feet = 8 million cubic feet x (0.0283 cubic metre / cubic feet) = 0.2264 million cubic metres. If 0.2264 million cubic metres of gas is burnt per day, then 0.2264 million / 24 = 9433 cubic metres of gas is burnt per hour. (b)(i) Let 50 mole of methane and 50 mole of ethane in the gas. Mass (g) = Mole (mol) x Molar Mass (g / mol), then mass of methane = 50 x 16.04 = 802 and mass of ethane = 50 x 30.07 = 1503.5. Total mass of natural gas = 802 g + 1503.5 g = 2305.5 g, then mass % of methane = (802 / 2305.5) x 100 = 34.786 % and mass % of ethane = 100 - 34.786 = 65.214 %. (ii) Density of methane gas = 0.716 g / L, density of ethane gas = 1.3562 mg / (cubic cm) = 1.3562 mg / mL = 1.3562 g / L. Volume (V) = Mass (m) / Density (r). Then V = m / r = 0.34786 m / 0.716 + 0.65214 m / 1.3562 = 0.9667 m, average density, r = m / (0.9667 m) = 1.0344 g / L. (ii) Mass (m) = Volume (V) x Density (r). Then m = Vr = 0.5V x 0.716 + 0.5V x 1.3562 = 1.0361V, average density, r = 1.0361V / V = 1.0361 g / L. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
who is the first atomic scientist in india?
what is the differance between Horizental and vertical heat exchanger?
11 Answers Bihar Caustic and Chemicals,
I am pg student of chemical engg. I am intrested Heat Transfer Subject . I want information about advance heat transfer related PG PROJECT
MICROBIOLOGICAL ENGINEERING - QUESTION 28.2 : A hemocytometer is a device that is used for counting cells. In an engineering experiment, 100 microlitres of cell suspension is diluted with 50 microlitres of Trypan blue dye. Only death cells appear blue in color when stained with the dye. There are 57 cells detected in a hemocytometer, where 5.3 % of them appear blue when the chamber of the meter is placed under a microscope. Each square of a chamber can contain 0.0001 mL of liquid. (a) Calculate the number of viable cells. (b) The cells occupied 5 squares. Calculate the average number of viable cells / square. (c) Calculate the dilution factor of the cell suspension by using the formula : Dilution = final volume / initial volume. (d) Calculate the concentration of viable cells / mL by using the formula : Concentration = (Average number of viable cells / square) x dilution x (square / volume).
How can you estimate a gas flow based on two pressure measurements?
DEAR SIR, IS IT ANY BARC TECHNICAL OR INTERVIEW QUESTION BOOK IN CHEMICAL ENGG LAST YEARS IN MARKET? ALSO GIVE THE PATTERN HOW TO PREPARE AND WHAT TYPE OF QUESTION THEY ASKED?
Question 78 - Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039% carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air–fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.
what is the hearth and arch pressure in furnace?
all subject of chemical engg
QUANTUM COMPUTING - EXAMPLE 32.10 : In quantum computing, the conversion of Control Not (CNOT) gate in two input quantum bit gate could be decribed as : | 00 > --> | 00 >, | 01 > --> | 01 >, | 10 > --> | 11 >, | 11 > --> | 10 >. If | P > = 0.707 ( | 01 > - | 11 > ), find the value of CNOT | P >.
Is it advisable to cool a fin fan by spraying demineralized water on it?
Explain what information is needed to specify a mixer?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)