CHEMICAL ENERGY BALANCE - EXAMPLE 11.4 : Calculate the bubble temperature T at P = 85-kPa for a binary liquid with x(1) = 0.4. The liquid solution is ideal. The saturation pressures are Psat(1) = exp [ 14.3 - 2945 / (T + 224) ], Psat(2) = exp [ 14.2 - 2943 / (T + 209) ] where T is in degree Celsius. Please take note that x(1) + x(2) = 1. Please take note that y(1) + y(2) = 1, y(1) = [ x(1) * Psat(1) ] / P, y(2) = [ x(2) * Psat(2) ] / P, * is multiplication. P is in kPa.
CHEMICAL ENERGY BALANCE - ANSWER 11.4 : By trial and error, T = 84.37 degree Celsius. Excel program may be used, either by Solver or Goal Seek. Overall equation : y(1) + y(2) = 1 = { 0.4 exp [ 14.3 - 2945 / (T + 224) ] + 0.6 exp [ 14.2 - 2943 / (T + 209) ] } / 85. Solve the equation by computer iteration with one unknown will produce T = 84.37 degree Celsius. Let x(2) = 1 - x(1) = 1 - 0.4 = 0.6, P = 85. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
A cylindrical vessel of 10m height has water upto 6m and is under a pressure of 15bar.What will be the pressure at the bottom most point of the vessel?
Question 71 - (a) The byte is the basic building block of computer data used in chemical engineering process simulation where 16 bits make a word, 4 bits make a nibble, 32 bits make a quad word and 8 bits make a byte. Then how many nibbles are there in a megabytes? (b) In computer data items, let : 1 bit - counts from 0 to 1, 8 bits - counts from 0 to 255, 16 bits - counts from 0 to A. What is the value of A? (c) In a binary system of 4 bits, if 1100 = 12, 1101 = 13, 1110 = 14, 1111 = 15, B = 16, then guess the value of B. (d) By using any form of tools, find the exact value of 2 power 64 or 2^64.
Question 91 - In the application of Theory of Spectrometry in spectrophotometer, let n = N x C x V, V = A x t, e = a x N where n = number of molecules, N = Avogadro's number, V = volume of cuvette, A = area of cuvette, t = thickness of cuvette, C = concentration of fluid in the cuvette, e = extinction coefficient, a = effective area of molecule. (a) By using calculus in dI = -I x a x N x C x dt, prove that ln (I / Io) = -a x N x C x t, where dI is the small difference in I and dt is the small difference in t. I = intensity of light. Io = initial intensity of light. (b) Show by calculations that ln (Io / I) = e x C x t based on the answer in the previous question (a). (c) Find the equation of log (Io / I) as a function of e, C and t based on the answer in the previous question (b).
why back washing is performed in DM water plant?
Do you have recombinant protein expression experience? Explain?
what is the height between the reflux pump and condenser ?
What are the design considerations for a piping system for the transfer of slurries?
BIOPROCESS ENGINEERING - EXAMPLE 14.2 : An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.
what is first order of reaction?
What particle sizes are electrostatic precipitators used to remove?
Question 33 – By using Excel program either on laptop or desktop PC, solve the differential equation dy / dx = -2y + x + 4 with h = 0.005, initial values : x = 0, y = 1. The 4th order Runge-Kutta method provides : y(N + 1) = y(N) + (1/6) (k1 + 2k2 +2k3 + k4), k1 = h [ -2y(N) + x(N) + 4 ], k2 = h { -2 [ y(N) + k1 / 2 ] + x(N) + h / 2 + 4 }, k3 = h { -2 [ y(N) + k2 / 2 ] + x(N) + h / 2 + 4 }, k4 = h { -2 [ y(N) + k3 ] + x(N) + h + 4 }. What is the value of y at x = 0.5?
BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.6 : In infrared spectrum, one of the factors affecting peak location is the mass of the atoms. The stretching frequency of a bond connected to a lighter atom will be greater than the same bond connected to a heavier atom. (a) For halogens like florine (F), chlorine (Cl), bromine (Br), iodine (I) and astatine (At), what is their IUPAC group number? Hint : The proton numbers for F, Cl, Br, I and At are 9, 17, 35, 53 and 85 respectively. (b) For the compounds of H-F, H-Cl, H-Br, H-I and H-At, which one has the lowest stretching frequency and which one has the highest stretching frequency? State the reasons.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)