ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.2 : (a) In the pricing of a coupon bond, the formula is : P = c / (1 + r) + (c + B) / [ (1 + r) (1 + r) ] for 2 years to maturity, where c = annual coupon payment (in dollars, not a percent), B = par value, P = purchase price. Five years ago someone bought a 20 year coupon bond and would like to get rid of it now : A coupon rate of 7 %, it matures in exactly 2 years, par value is $1000, current interest rate is 5 %. (i) Find the value of c. (ii) Find the value of r or interest rate. (iii) Find the value of P. (iv) Guess the formula for P when the maturity period is 3 years, if such formula for 1 year duration is P = (c + B) / (1 + r). (b) In lemma of Ito on a Forward, recall that a forward contract is priced at : ln F = ln S + rT. Find the value of F in 5 decimal points when S = $100, r = interest rate = 0.05 / year, T = duration = 1 year.



ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.2 : (a) In the pricing of a coupon bond, the formu..

Answer / kangchuentat

ACCOUNTING AND FINANCIAL ENGINEERING - ANSWER 34.2 : (a) (i) c = $1000 x 0.07 = $70. (ii) r = 5 % = 0.05. (iii) P = c / (1 + r) + (c + B) / [ (1 + r) (1 + r) ] = 70 / (1 + 0.05) + (70 + 1000) / [ (1 + 0.05) (1 + 0.05) ] = $1037.19. (iv) For 3 year maturity period prediction by induction, P = c / (1 + r) + c / [ (1 + r) (1 + r) ] + (c + B) / [ (1 + r) (1 + r) (1 + r) ]. (b) Let ln F = ln S + rT = ln 100 + 0.05. Then F = $105.127109 or F = $105.12711 (in 5 decimal points). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

ENGINEERING PHYSICS - EXAMPLE 30.3 : (a) The quantum number m is given by m = -s, -s + 1. If s = 0.5, find the values of m. (b) | T > = (cos T) | V > + (sin T) | H >. The V and H states form a basis for all polarizations. Let cos T = 0.8. (i) If (sin T)(sin T) + (cos T)(cos T) = 1, find the value of sin T. (ii) For | T > = a | V > + b | H >, where a x a represents the probability of | V > and b x b represents the probability of | H >. Which one is more abundant, | V > or | H >? (iii) Find the value of T without using any mathematical tools.

1 Answers  


What is an isochoric process?

0 Answers  


ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.7 : An engineering investor purchases a $1000 bond that matures in 25 years. The coupon rate is 8 %. The purchase price is at 95 or 95 % of the par bond value. (a) What is the purchase price of the bond? (b) How much discount is enjoyed by the investor on average each year? (c) Find the income generated from coupon rate each year. (d) Find the overall interet rate or Yield to Maturity (YTM) by using the formula : YTM = [ Answer in (c) + Answer in (b) ] x 200 / [ par bond value + Answer in (a) ].

1 Answers  


What happens when fuel is burned , what are compounds released??

3 Answers   Reddy Labs,


What compounds are responsible for the odors that come from wastewater treatment plants?

0 Answers  






How many grams per liter would there be in a 0.35 n (normality) citric acid solution?

0 Answers  


how much time will take 20000 liter water to cool from 80-30 0C ? Assume all parameters constant

1 Answers  


What are the effects of oils on the properties of Polyolefins?

0 Answers   IOCL,


Question 66 – The drag coefficient Cd = 0.05 and lift coefficient Cl = 0.4 for a levelled flow aircraft are measured. The velocity of the aircraft is v = 150 ft / s with its weight W = 2677.5 pound-force. (a) Find the value of the lift of the aircraft, L, when it is also its weight. (b) The drag of the aircraft, D = Cd M, L = Cl M. Find the value of D. (c) The power required is P = Dv. If 1 pound-force x (ft / s) = 1.356 W, find the value of P in the unit of Watt or W.

1 Answers  


X is a solid having a white colour at room temperature. It has a density about 2g/cc. Although it has melting point near 325 degree Celsius, its properties start degrading above 260 degree Celsius. The coefficient of friction is very low about 0.1. It has very good dielectric properties especially at higher radio frequencies. It has a very high bulk resistivity. It is chemically inert. It is also resistant to van der Waals force. It is hydrophobic as well as lipophobic. Creep or ‘Cold Flow’ has been observed in X.

0 Answers   Ford,


Question 62 – The names of the flow streams could be represented by : H1 for first hot stream, H2 for second hot stream, C1 for first cold stream, C2 for second cold stream. Data of supply temperature Ts in degree Celsius : 150 for H1, 170 for H2, 30 for C1, 30 for C2. Data of target temperature Tt in degree Celsius : 50 for H1, 169 for H2, 150 for C1, 40 for C2. Data of heat capacity Cp in kW / degree Celsius : 3 for H1, 360 for H2, 3 for C1, 30 for C2. (a) Find the enthalpy changes, dH for all streams of flow H1, H2, C1 and C2 in the unit of kW. Take note of the formula dH = (Cp) (Tt - Ts). (b) Match the hot streams H1 and H2 with the suitable cold streams C1 and C2 to achieve the maximum energy efficiency.

1 Answers  


Dielectric materials in static fields

0 Answers   HCL,


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)