Question 81 - (a) In natural gas pipe sizing, the length of the pipe from the gas source metre to the farthest appliances is 60 feet. The maximum capacities for typical metallic pipes of 60 feet in length are : 66 cubic feet per hour for pipe size of 0.5 inches; 138 cubic feet per hour for pipe size of 0.75 inches; 260 cubic feet per hour for pipe size of 1 inch. By using the longest run method : (i) Find the best pipe size needed for the capacity of 75 cubic feet per hour. (ii) Estimate the suitable range of capacities for the pipe size of 1 inch. (b) The maximum capacities for typical metallic pipes of 50 feet in length are : 73 cubic feet per hour for pipe size of 0.5 inches; 151 cubic feet per hour for pipe size of 0.75 inches; 285 cubic feet per hour for pipe size of 1 inch. By using the branch method find the best pipe size needed for the capacity of 75 cubic feet per hour when the length of the pipe from the gas source metre to the appliance is 52 feet.



Question 81 - (a) In natural gas pipe sizing, the length of the pipe from the gas source metre to th..

Answer / kangchuentat

Answer 81 - (a)(i) Best pipe size needed = 0.75 inches for the capacity of 75 cubic feet per hour. Data for a metallic pipe of 60 feet in length and maximum capacity of 138 cubic feet per hour instead of 66 cubic feet per hour are selected. (ii) Range is more than 138 but less than or equal to 260 cubic feet per hour for pipe size of 1 inch. (b) Best pipe size needed = 0.75 inches for the capacity of 75 cubic feet per hour. Data for a metallic pipe of 60 feet in length instead of 50 feet and maximum capacity of 138 cubic feet per hour instead of 66 cubic feet per hour are selected. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

Hi.. Me going to tke test for management trainee(technical) Post I am an chemical engineering student . Can u guide how to prepare for this test.Can u send me test paper pattern..?

0 Answers  


why screw compressor use for ammonia compression?

0 Answers   Deepak Fertilisers,


Are there flow velocity restrictions to avoid static charge build up in pipelines?

0 Answers  


why do tangential entry require for a cyclone separator?

1 Answers  


hi i need cpcl written exam question papers if anybody pls help me

0 Answers  






how to reduce COD from plant waste water closed circulation system

1 Answers  


Explain the method adopted to minimize shell side pressure drop in a shell?

0 Answers  


What are the some common problems associated with dilute phase pneumatic conveying?

0 Answers  


GENETIC ENGINEERING - EXAMPLE 27.3 : (a) Male with genotype GGmm and phenotype gray wingless mates with female with genotype ggMM and phenotype black winged in fruit flies. G is dominant to g in color. M is dominant to m in wing shape. If the actual distribution of the second generation of the fruit flies was as follow : 890 gray wingless, 900 black winged, 115 gray winged, 95 black wingless, calculate the recombination frequency between the two genes and distance in recombination units. Let 1 map unit = 1 % recombination. (b) A DNA molecule has 180 base pairs and 20 % adenine. How many cytosine nucleotides are present in this molecule of DNA?

1 Answers  


what is the role of a chemical engineer on a cement plant?

4 Answers  


what is unit operation?

8 Answers   Sun Pharma, Zydus Cadila,


CHEMICAL FLUID MECHANIC - EXAMPLE 3.1 : Water flows through a pipe with circular cross sectional area at the rate of V / t = 80 L / s where V is the volume and t is time. Let Av = 80 L / s where A is cross sectional area and v is velocity of fluid. For point 1, the radius of the pipe is 16 cm. For point 2, the radius of the pipe is 8 cm. Find (a) the velocity at point 1; (b) the velocity at point 2; (c) the pressure at point 2 by using Bernoulli's equation where P + Rgy + 0.5 RV = constant. P is the pressure, R = density of fluid, V = square of fluid's velocity, g = gravitational constant of 9.81 N / kg and y = 2 m = difference of height at 2 points. The pressure of point 1 is 180 kPa.

1 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)